The Promise and Challenges of Implementing Pharmacogenomics to improve Population Health: Where are we Heading with **Pre-emptive** Pharmacogenomic Screening?

Munir Pirmohamed

David Weatherall Chair of Medicine, and NHS Chair of Pharmacogenetics

Email: munirp@liverpool.ac.uk

English Medicines Landscape

1 million patients every 36 hours

1.1 billion community prescriptions

£20 billion annual cost

8000 hospital inpatients with ADRs

>£2.1 billion annual cost

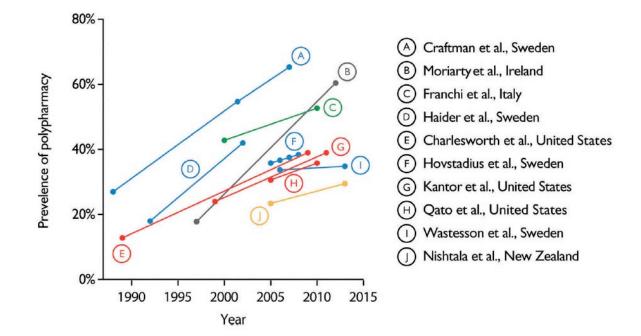
237 million medication errors

Variability in Drug Response

Efficacy 90% of drugs only work in 30-50% of patients

Safety

6.5% of all hospital admissions are due to ADRs

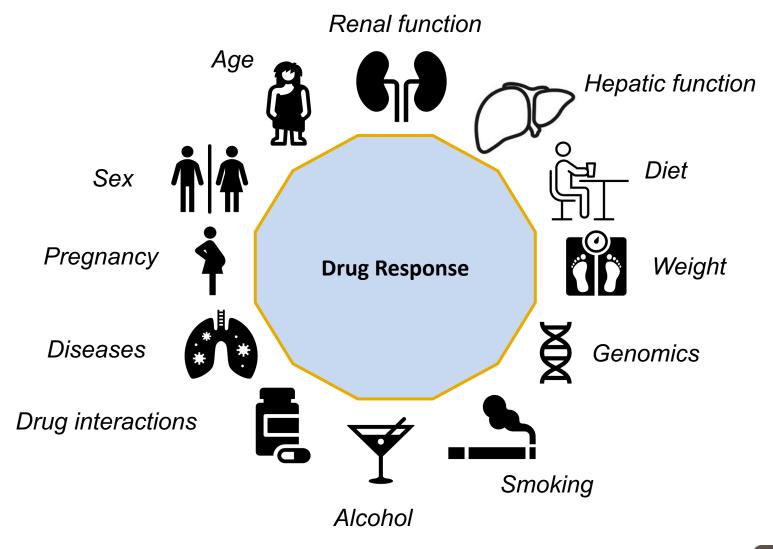

Polypharmacy

Good for you, good for us, good for everybody

A plan to reduce overprescribing to make patient care better and safer, support the NHS, and reduce carbon emissions

Published 22 September 2021

- 15% of patients on 5 or more medicines, 7% on ≥ 8
- Elderly, those with disabilities and minority ethnic backgrounds disproportionately affected


To cite this article: Jonas W. Wastesson, Lucas Morin, Edwin C.K. Tan & Kristina Johnell (2018) An update on the clinical consequences of polypharmacy in older adults: a narrative review, Expert Opinion on Drug Safety, 17:12, 1185-1196, DOI: <u>10.1080/14740338.2018.1546841</u> Adverse drug reactions, multimorbidity and polypharmacy: a prospective analysis of 1 month of medical admissions

BMJ Open 2022;12:e055551

Rostam Osanlou ^(b),^{1,2} Lauren Walker,^{1,2} Dyfrig A Hughes ^(b),³ Girvan Burnside,⁴ Munir Pirmohamed ^(b),^{1,2}

- ADRs accounted for 16.5% of hospital admissions
- Those with ADRs take more medicines and have more co-morbidities
- Mortality rate 0.34%
- Length of stay 6 days
- Cost to NHS England £2.21 billion per annum

Variability in Drug Response

Definition

Current definition

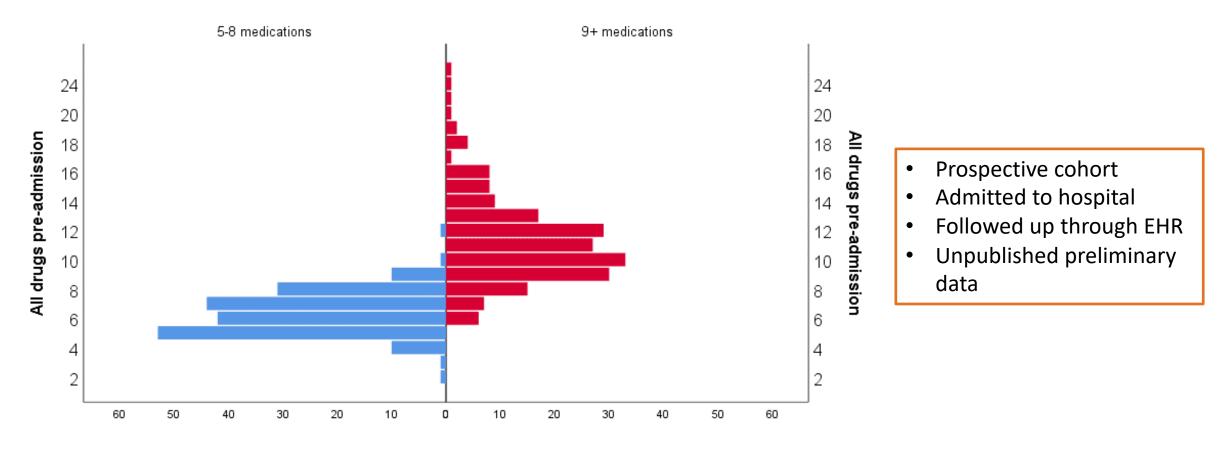
 The study of variations of DNA and RNA characteristics as related to drug response

Broader definition

 The study of genomic technologies to enable the discovery and development of novel drugs, and the optimisation of drug dose and choice in individual patients to maximise efficacy and minimise toxicity

Friedrich Vogel

Pharmacogenomics: current status and future perspectives

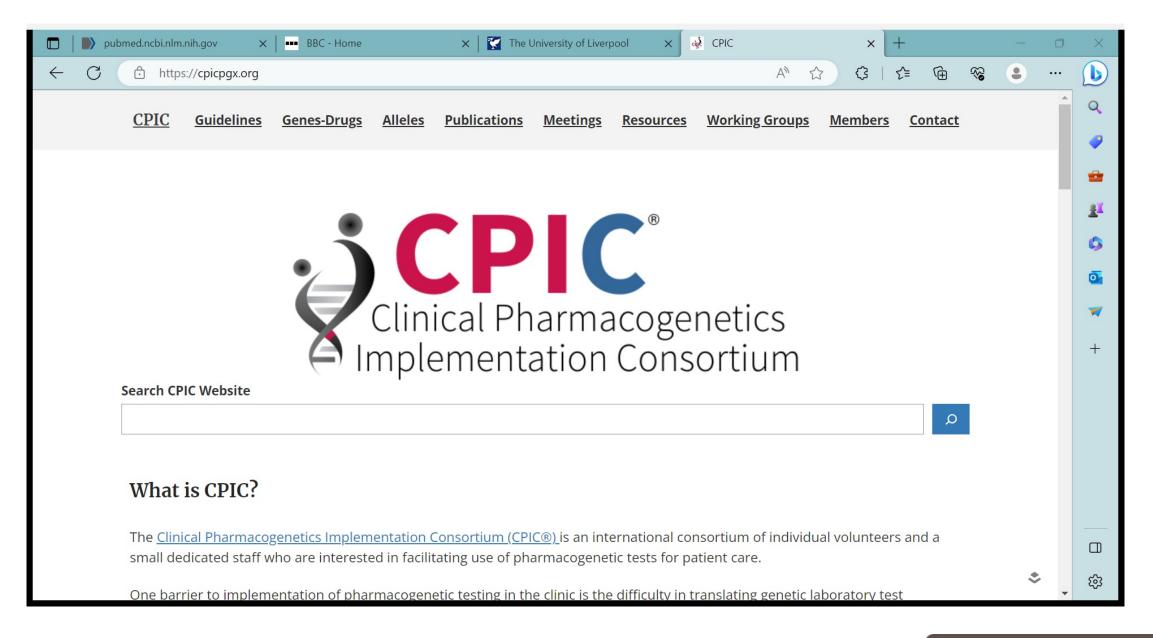

Munir Pirmohamed ወ 🖂

https://doi.org/10.1038/s41576-022-00572-8

Pharmacogenomic Variation

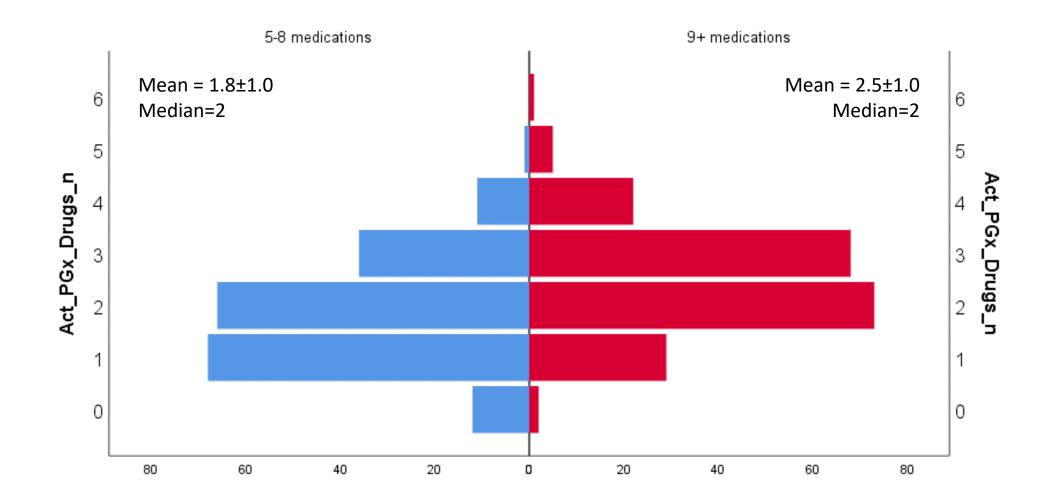
Country	Number studied	Proportion carrying at least one	Reference
		actionable genotype or diplotype	
Australia	5408	95.9%	J Neural Transm (Vienna) 126 , 5-18 (2019)
Canada	98	96.9%	NPJ Genom Med 2 , 19 (2017)
Estonia	42092	99.8%	Genet Med 21 , 1345-1354 (2019)
Netherlands	498	99.4%	Front Genet 10 , 567 (2019)
Qatar	6045	99.5%	NPJ Genom Med 7 , 10 (2022)
UK	487,409	99.5%	<i>Clin Pharmacol Ther</i> 109 , 1528-1537 (2021)
UK	713	98.7%	BMC Med 18 , 367 (2020)
US	9,589	91.4%	Clin Pharmacol Ther 95 , 423-31 (2014)
US	1,013	99.0%	<i>J Mol Diagn</i> 18 , 438-445 (2016)

Polypharmacy Cohort (n=400)



Number

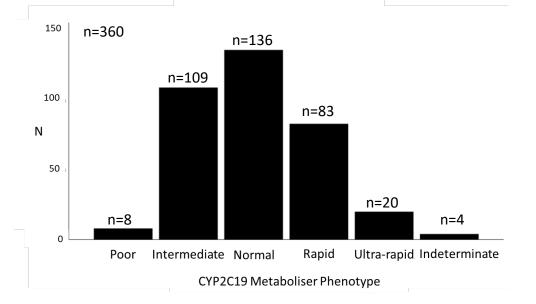
THE WOLFSON CENTRE FOR PERSONALISED MEDICINE Unpublished



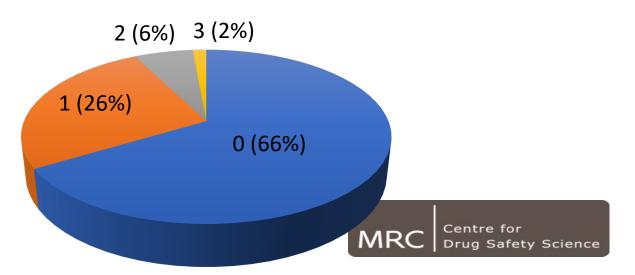
Polypharmacy Cohort: Actionable PGx Drugs


Three Examples with Distinct Issues

Clopidogrel and CYP2C19



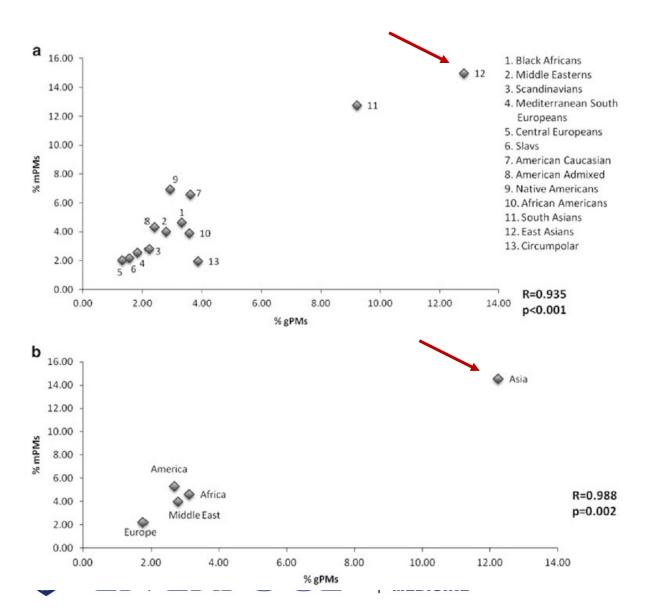
- Clopidogrel pro-drug. Requires activation by CYP2C19
- Recent RCT data in coronary artery disease
- But still not in major guidelines (including AHA and ESC)
- Greater acceptance by stroke physicians and this is now the main area for implementation in the UK
- Recent approval by NICE for stroke/TIA indication


CYP2C19 Polymorphism Data

CYP2C19 Metaboliser Phenotype

Actionable CYP2C19 Drug-gene pairs

Drug	Patients receiving	Drug-gene pairs (n)
Amitriptyline	44	15
Citalopram	31	19
Clomipromine	1	1
Clopidogrel	52	11
Escitalopram	2	2
Lansoprazole	141	51
Omeprazole	112	40
Pantoprazole	4	1
Sertraline	48	14
		154



CYP2C19 Drug-gene pairs per patient

MEDICINE

Cytochrome P450 2C19 (CYP2C19)

Interethnic variation of *CYP2C19* alleles, 'predicted' phenotypes and 'measured' metabolic phenotypes across world populations

I Fricke-Galindo^{1,2}, C Céspedes-Garro^{1,3}, F Rodrigues-Soares^{1,4}, MEG Naranjo¹, Á Delgado¹, F de Andrés¹, M López-López⁵, E Peñas-Lledó¹ and A LLerena¹

The Pharmacogenomics Journal (2016) 16, 113–123

- 202 substrates listed on DrugBank
- Important substrates
 - Clopidogrel
 - Citalopram
 - Voriconazole
 - Omeprazole
 - Phenytoin
 - Proguanil

Unintended Consequence s

(Reuters) - A judge in Hawaii on Monday ordered Bristol-Myers Squibb Co and Sanofi SA to pay more than \$834 million to the state for failing to warn non-white patients properly of health risks from its blood thinner Plavix.

Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease

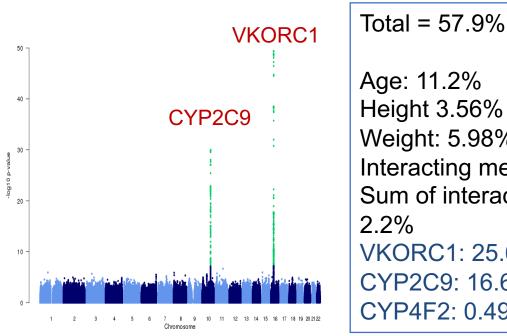
Received: 20 July 2022

Accepted: 7 March 2023

Nicholas R. Powell \mathbb{O}^1 , Tiebing Liang \mathbb{O}^2 , Joseph Ipe¹, Sha Cao \mathbb{O}^2 , Todd C. Skaar Zeruesenay Desta¹, Hui-Rong Qian³, Philip J. Ebert³, Yu Chen³, Melissa K. Thomas³ & Naga Chalasani $\mathbb{O}^2 \boxtimes$

Published online: 17 March 2023

- Decrease in CYP2C19 mRNA in different NAFLD phenotypes
- Confirmed by meta-analysis in 16 studies
- Decrease by 43-58% in CYP2C19 mRNA
- Equivalent to an intermediate metaboliser
- NAFLD patients shown previously to have reduced effect to clopidogrel
- NAFLD often excluded from trials



THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

4				NASH vs. Control			
Author	Year	Tech	N	CYP2C19 mRNA Expression	Value	95% CI	Weight
P BO GI I G	100	10011		or contract Expression	· ororo		
Suppli	2019	RNA-seq	42		-3.22	[-4.61; -1.82]	5.6%
Starmann	2012	array	25		-3.04	[-4.02; -2.06]	7.2%
Powell	2022	RNA-seq	77	-	-1.51	[-2.14; -0.89]	8.7%
Govaere	2020	RNA-seq	165		-1.45	[-2.45; -0.45]	7.1%
Seda	2019	array	51		-1.13	[-1.91; -0.35]	8.1%
Horvath	2014	array	86	*	-0.93	[-1.34; -0.52]	9.5%
Teufel	2016	array	64	-	-0.90	[-1.31; -0.49]	9.5%
Kozumi*	2021	RNA-seq	98	폰	-0.87	[-1.44; -0.30]	8.9%
Ahrens	2013	array	59	폰	-0.80	[-1.28; -0.32]	9.3%
Lake	2011	array	35	<u>=</u>	-0.74	[-1.34; -0.14]	8.8%
Arendt	2015	array	43		-0.60	[-0.81; -0.38]	10.0%
Frades	2015	array	16		0.63	[-0.33; 1.59]	7.3%
		Model Estir			-1.13	[-1.73; -0.53]	100.09
Sample siz	e-weigt	ted effect = -	1.23	-4 -2 0 2 4			
3							
				Fibrosis 3-4 vs. 0-1			
Author	Year	Tech	N	CYP2C19 mRNA Expression	Value	95% CI	Weight
Moylan	2014	array	72	:	-2.29	[-3.13; -1.44]	9.8%
Govaere	2020	RNA-seq	162		-1.78	[-2.26; -1.30]	14.1%
Powell	2022	RNA-seq	72		-1.33	[-2.01; -0.65]	11.6%
Gerhard	2018	RNA-seq	89		-1.30	[-1.81; -0.78]	13.6%
Ahrens	2013	array	70		-1.08	[-1.98; -0.18]	9.2%
Seda	2019	array	50		-0.98	[-1.57; -0.39]	12.6%
Hoang	2019	RNA-seq	69		-0.87	[-1.44; -0.30]	12.9%
Arendt	2015	array	53	-	-0.47	[-0.75; -0.18]	16.2%
_							
		Model Estir			-1.22	[-1.61; -0.82]	100.0%
Sample siz	e-weigt	ted effect = -	1.37	-3 -2 -1 0 1 2 3			
-							
Author	Year	Tech	N	AFLD Activity Score 5–8 vs. 0- CYP2C19 mRNA Expression		95% CI	Weight
Autio	real	recit		CTP2CT9 Inches Expression	value	83 % 61	weign
Suppli*	2019	RNA-seq	41		-2.41	[-3.68; -1.13]	2.2%
Powell	2022	RNA-seq	93		-1.34	[-1.87; -0.81]	8.5%
Seda	2019	array	91		-1.08	[-1.83; -0.33]	5.3%
Hoang	2019	RNA-seq	78		-1.00	[-1.46; -0.53]	10.0%
Govaere	2020	RNA-seq	216	*	-0.89	[-1.32; -0.47]	10.9%
Ahrens	2013	array	73		-0.73	[-1.22; -0.23]	9.3%
Baselli*	2020	RNA-seq	125	- <u>+</u> -	-0.68	[-1.10; -0.26]	11.1%
Arendt	2015	array	62		-0.64	[-0.88; -0.39]	16.7%
Teufel*	2016	array	66	<u></u>	-0.52	[-0.82; -0.22]	14.6%
Horvath*	2014	array	85		-0.36	[-0.77; 0.04]	11.5%
Denter	-						400.00
		Model Estir			-0.79	[-1.06; -0.52]	100.0%
Sample siz	e-weigt	ted effect = -	0.9	-3-2-10123			
				-3 -2 -1 0 1 2 3			

Log2 Fold Change

Warfarin

Age: 11.2% Height 3.56%

Weight: 5.98% Interacting meds: 0.98% Sum of interacting meds: VKORC1: 25.61% CYP2C9: 16.65% CYP4F2: 0.49%

DISCOVERY

ALGORITHM (PRS)

A Randomized Trial of Genotype-Guided Dosing of Warfarin

Munir Pirmohamed, Ph.D., F.R.C.P., Girvan Burnside, Ph.D., Niclas Eriksson, Ph.D., Andrea L. Jorgensen, Ph.D., Cheng Hock Toh, M.D., Toby Nicholson, F.R.C.Path., Patrick Kesteven, M.D., Christina Christersson, M.D., Ph.D., Bengt Wahlström, M.D., Christina Stafberg, M.D., J. Eunice Zhang, Ph.D., Julian B. Leathart, M.Phil., Hugo Kohnke, M.Sc., Anke H. Maitland-van der Zee, Pharm.D., Ph.D., Paula R. Williamson, Ph.D., Ann K. Daly, Ph.D., Peter Avery, Ph.D., Farhad Kamali, Ph.D., and Mia Wadelius, M.D., Ph.D., for the EU-PACT Group*

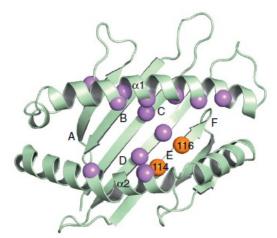
CLNICAL UTILITY

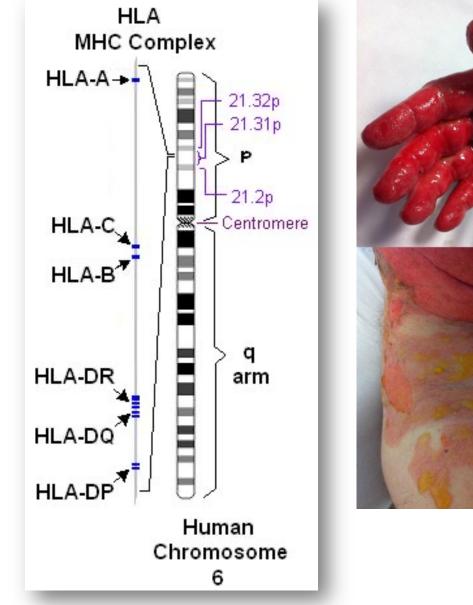
Implementation of genotype-guided dosing of warfarin with point-of-care genetic testing in three UK clinics: a matched cohort study

Andrea L. Jorgensen^{1*}, Clare Prince², Gail Fitzgerald², Anita Hanson², Jennifer Downing^{3,6}, Julia Reynolds⁴, J. Eunice Zhang³, Ana Alfirevic³ and Munir Pirmohamed⁵

IMPLEMENTATION

Difficulties in Implementing Warfarin Pharmacogenomics

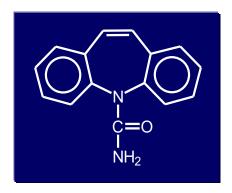

- Difficulties in changing clinician behaviour
- INR thought to be adequate
- EU-PACT vs COAG
- No recommendation in clinical guidelines
- Lack of availability of genotyping platforms
- Introduction of DOACs
- Pandemic hastening change in prescribing behaviour
- Lack of diversity in data


Human Leucocyte Antigens (HLA)

- On short arm of chromosome 6
- More than 200 genes
- Associated with more than 100 diseases
- Involved in the pathogenesis of immune-mediated adverse drug reactions

HLA-B*57:01 and Abacavir Hypersensitivity

Associations of Serious Adverse Drug Reactions with HLA Alleles


<mark>A*31:01</mark> Carbamazepine	<mark>A*33:03</mark> Ticlopidine	<mark>A*68:01</mark> Lamotrigine	<mark>A*02:06</mark> Cold medicines	B*13:01 Dapsone Trichlorethylene	B*15:02 Carbamazepine Phenytoin
B*35:05 Nevirapine	B*44:03 Cold Medicines	B*56:02 Phenytoin	B*57:01 Abacavir Flucloxacillin	B*58:01 Allopurinol	C*04:01 Nevirapine
C*08:(01) Nevirapine	DRB1*07:01 Ximelagatran Lapatinib Asparaginase	DRB1*11:01 Statins	DRB1*13:02 Aspirin	DRB1*15:01 Lumiracoxib Co-amoxiclav	DQA1*01:02 Lumiracoxib
DQA1*02:01 Lapatinib	DQB1*02:01 Ximelagatran Clometacin	DQB1*05:02 Clozapine	DQB1*06:02 Co-amoxiclav Lumiracoxib	DQB1*06:04 Ticlopidine	DQB1*06:09 Aspirin

Carbamazepine Hypersensitivity

- Different phenotypes of carbamazepine hypersensitivity
 - Skin (mild \rightarrow blistering)
 - Liver
 - Systemic (DRESS)
- HLA-B*15:02 replication and cohort studies have shown utility in SE Asian patients
- HLA-A*31:01 replication and cohort studies have shown utility in several different ethnic groups worldwide

Clinical Pharmacogenetics Implementation Consortium Guideline for *HLA* Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update

Elizabeth J. Phillips¹, Chonlaphat Sukasem^{2,3}, Michelle Whirl-Carrillo⁴, Daniel J. Müller^{5,6}, Henry M. Dunnenberger⁷, Wasun Chantratita^{8,9}, Barry Goldspiel¹⁰, Yuan-Tsong Chen^{11,12}, Bruce C. Carleton¹³, Alfred L. George Jr.¹⁴, Taisei Mushiroda¹⁵, Teri Klein⁴, Roseann S. Gammal^{16,17} and Munir Pirmohamed¹⁸

Difficulties in Implementation

Study 1 (Chen et al¹²⁰)

- Based in Hong Kong
- Government paid for testing
- Physicians switched to other antiepileptic drugs instead of undertaking genetic testing
- The overall incidence of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) did not change, although carbamazepine-induced SJS/TEN decreased

Study 2 (Lin et al¹²¹)

- Based in Taiwan
- Nationwide screening
 introduced
- Incidence of carbamazepineinduced SJS/TEN decreased by 87% over 10 years but the use of carbamazepine also decreased by 83%
- Only 25% of new carbamazepine users were screened for *HLA-B*15:02*

Study 3 (Sung et al¹²²)

- Based in Singapore
- Genotyping introduced 2013 with a 75% subsidy
- Phenytoin not recommended as a substitute
- Led to a 92% reduction in carbamazepine-induced SJS/TEN
- Number of new carbamazepine users decreased by one-third

Taken from Immunol Allergy Clin N Am: https://doi.org/10.1016/j.iac.2022.01.006

Reducing severe cutaneous adverse and type B adverse drug reactions using pre-stored human leukocyte antigen genotypes

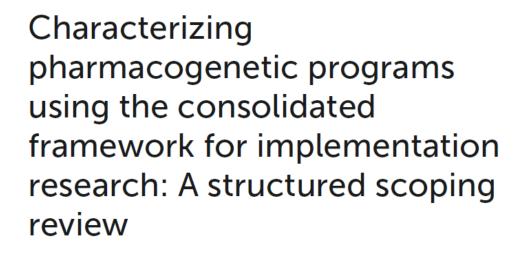
Kye Hwa Lee¹ | Dong Yoon Kang² | Hyun Hwa Kim² | Yi Jun Kim³ | Hyo Jung Kim⁴ | Ju Han Kim⁵ | Eun Young Song⁶ | James Yun^{7,8} | Hye-Ryun Kang^{2,9}

- Use of pre-stored HLA information from transplant recipients
- HLA-B*57:01, HLA-B*58:01, HLA-A*31:01, HLA-B*15:02, HLA-B*15:11, HLA-B*13:01, HLA-B*59:01, and HLA-A*32:01
- 11,988 HLA-tested transplant recipients
 - 4092 (34.1%) had high risk alleles
 - 4538 (38.2%) were prescribed risk drugs
 - 580 (4.8%) experienced type B ADRs
- Availability of pre-emptive HLA information has the potential to prevent serious hypersensitivity reactions

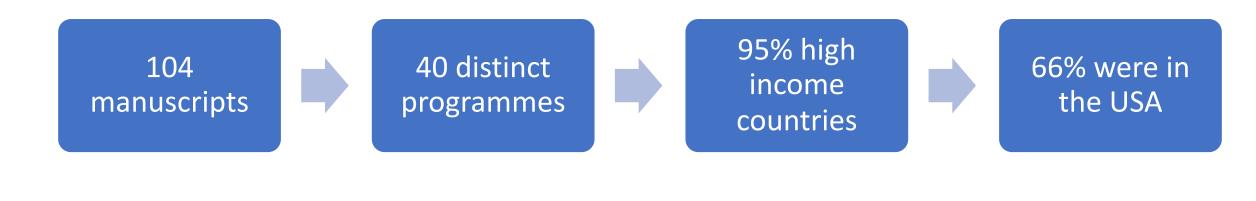
Clin Transl Allergy. 2022;e12098. https://doi.org/10.1002/clt2.12098

HLA Allele Panel

- Able to genotype for multiple HLA alleles
- Move from reactive to pre-emptive
- Cheaper than single locus testing
- Cost dominant in health economic analysis
- Turnaround time ~48 hours
- Dynamic change alleles as required



Implementation



John H. McDermott^{1,2*}, Stuart Wright³, Videha Sharma⁴, William G. Newman^{1,2}, Katherine Payne³ and Paul Wilson⁵

Front. Med. 9:945352. doi: 10.3389/fmed.2022.945352

Personalised prescribing

Using pharmacogenomics to improve patient outcomes Report published by Royal College of Physicians and the British Pharmacological Society

shorturl.at/bBGSZ

Recommendations

Implementation in all sectors and centrally funded

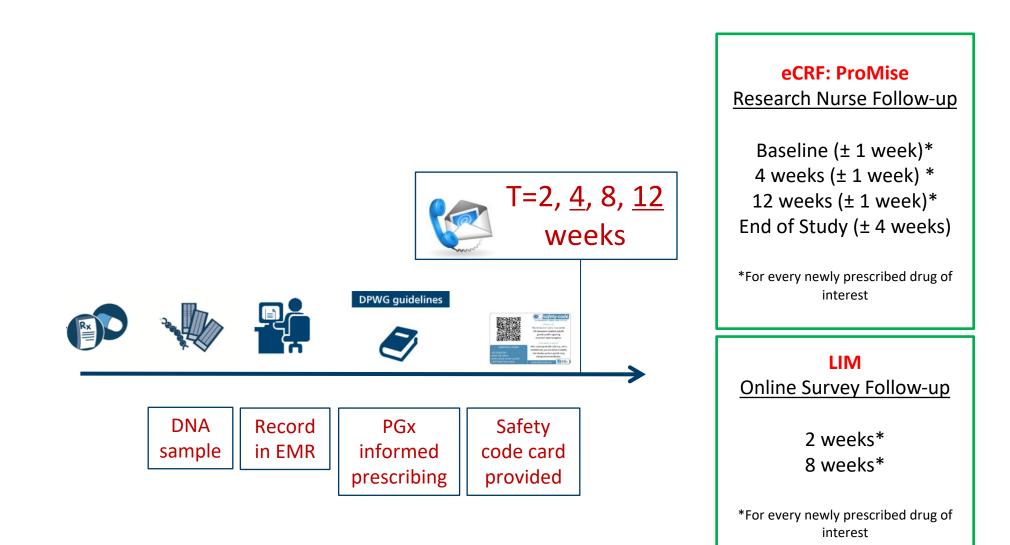
Agile (respond to advances) and continually evaluated

Comprehensive education and training package

Support for clinicians

Further research funding still needed

Clear lines of communication



PREemptive Pharmacogenomic testing for preventing Adverse drug *Re*actions (PREPARE)

Each site has its own therapeutic focus

Patient Journey Study Arm

Ubiquitous Pharmacogenomics

Genotyping platform

- 12 genes (including CYP2D6 and SLCO1B1)
- 44 variants
- 39 drugs

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

Pharmacogenomic Card

ontact	left repr gene impor He After scann smartphon	cation Safety Code on the searts a patient-specific tic profile regarding tant pharmacogenes. w does it work? ng the QR code (e.g. with a e), you are led to a website ays patient-specific drug	Scan QR code	Critical for this patient Azathioprine (!) Dutch Pharmacogenetics Working Group quideline
123/45 1e	www.safet	g recommendations. <u>vecode ors</u>		Research TPMT poor metabolizer Select alternative drug or reduce dose by 90%. Increase dose in
C	safety	-code Name: Jane Doe		response of hematologic monitoring and efficacy. Date of evidence: March 16, 2011
	Safety		mended!)	monitoring and efficacy.
Gene, CYP2C	dication Safety C status	ode initiative Date of birth: 01.02.1934	mended!)	monitoring and efficacy. Date of evidence: March 16, 2011 Show guideline website
Gene, CYP2C Poor m CYP2E	dication Safety C status 19 etabolizer	ode initiative Date of birth: 01.02.1934 Critical drug substances (modification recon	odeine, ol,	monitoring and efficacy. Date of evidence: March 16, 2011
Gene, CYP2C Poor m CYP2E Ultrara	dücation Safety (status 19 etabolizer 16 pid metabolizer	ode initiative Date of birth: 01.02.1934 Critical drug substances (modification recon Clopidogrel, Sertraline Amitriptyline, Aripiprazole, Clomipramine, C Doxepin, Haloperidol, Imigramine, Metopro Nortriptyline, Prooxetine, Progatenone, Risp	odeine, ol,	monitoring and efficacy. Date of evidence: March 10, 2011 • Show guideline website • Codeine (!)
Gene, CYP2C Poor m CYP2L Ultrara	dication Safety (status 19 etabolizer 6 pid metabolizer etabolizer	ode initiative Date of birth: 01.02.1934 Critical drug substances (modification recon Clopidogrel, Sertraline Amitriptyline, Aripiprazole, Clomipramine, C Doxepin, Haloperidol, Imigramine, Metopro Nortriptyline, Paroxetine, Progafenone, Risp Tamoxifen, Tramadol, Venlafaxine	odeine, ol, eridone,	monitoring and efficacy. Date of evidence: March 10, 2011 • Show guideline website • Codeine (!)

Primary endpoint

All occurred ADEs

Common Toxicity Criteria for Adverse Events

CAUSALITY

Unlikely

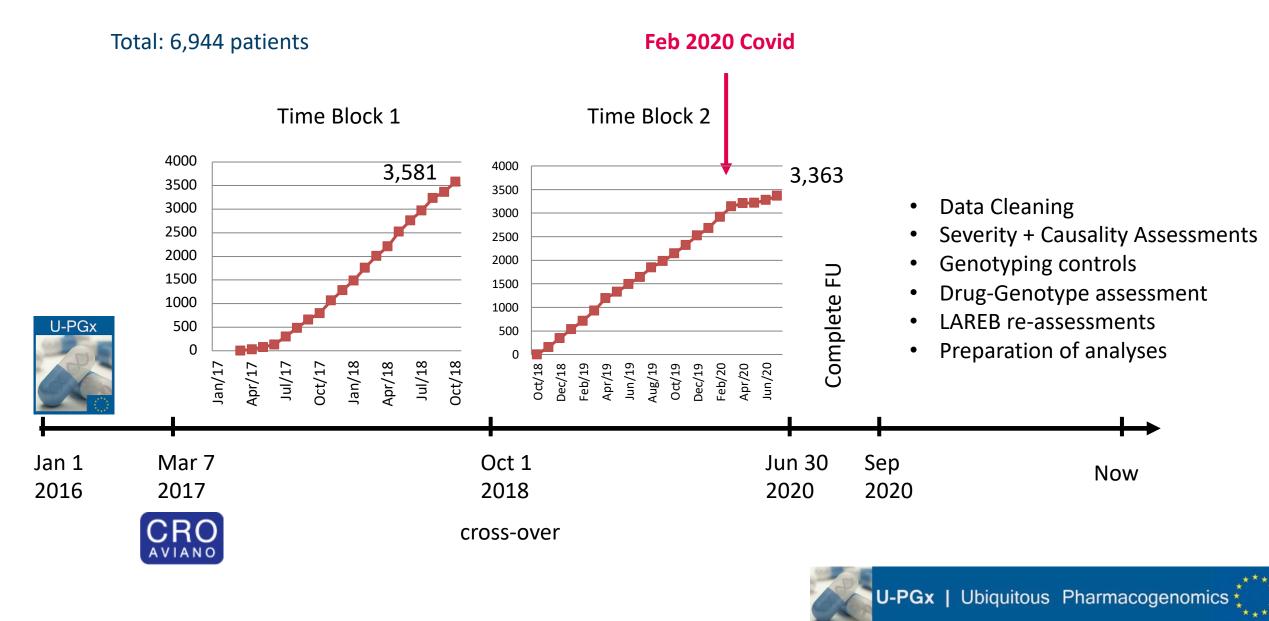
Grade 1

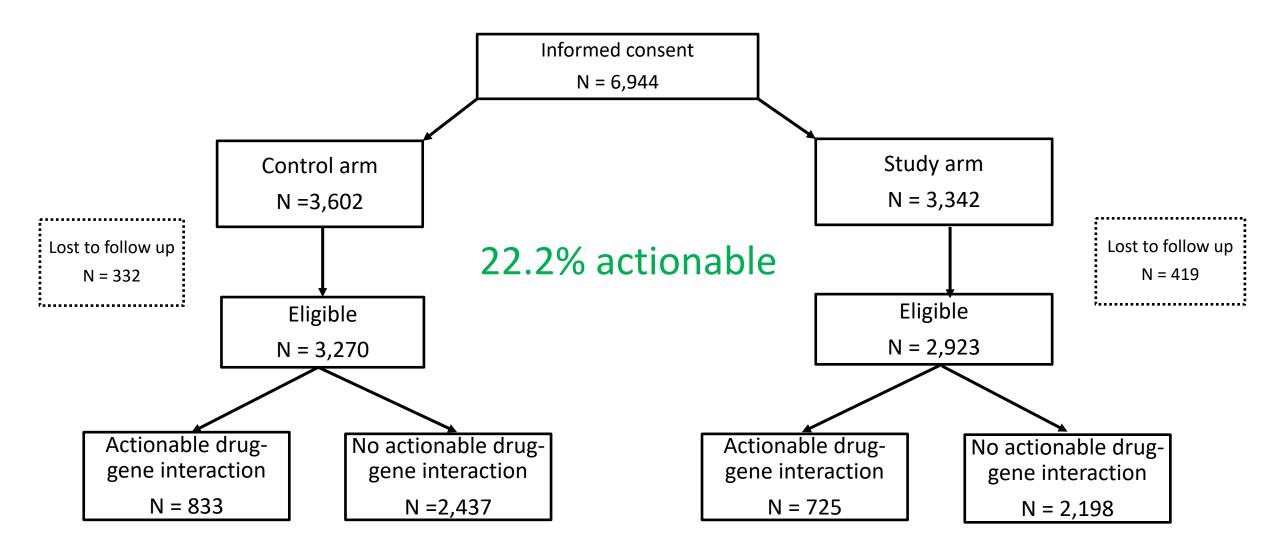
LCAT

Grade 2-5 CTC*

Definite

Probable


Possible

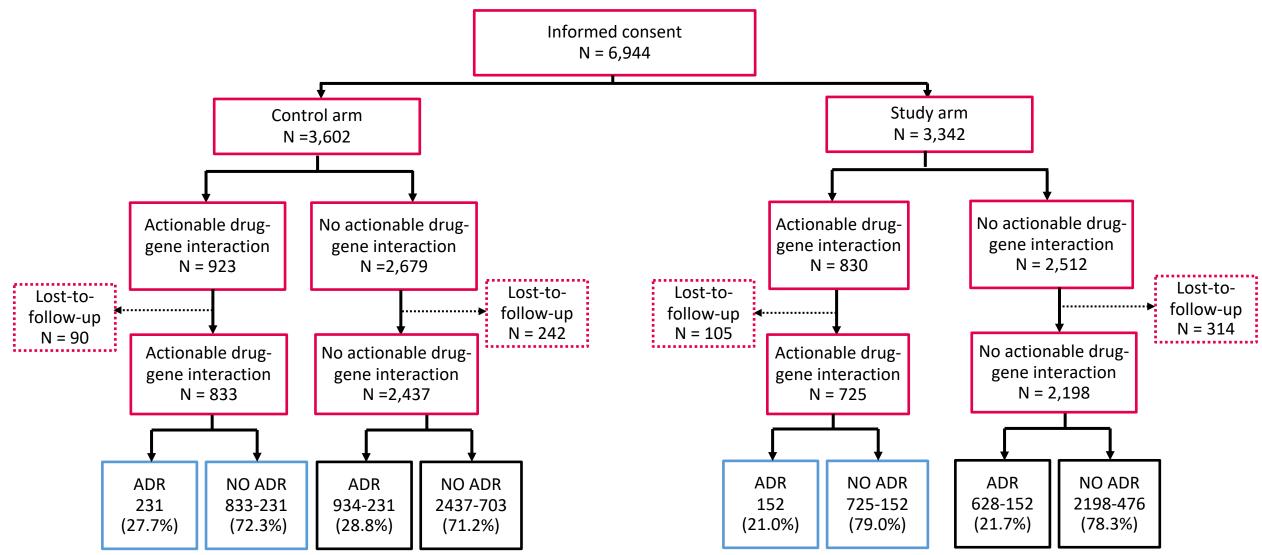

*For oncology patients only hematological toxicities of grade 4-5 and non-hematological toxicities of grade 3-5 will be considered clinically relevant

Clinically relevant ADRs, caused by the index drug

Timeline

A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, clusterrandomised crossover implementation study

Jesse J Swen, Cathelijne H van der Wouden*, Lisanne EN Manson*, Heshu Abdullah-Koolmees, Kathrin Blagec, Tanja Blagus, Stefan Böhringer, Anne Cambon-Thomsen, Erika Cecchin, Ka-Chun Cheung, Vera HM Deneer, Mathilde Dupui, Magnus Ingelman-Sundberg, Siv Jonsson, Candace Joefield-Roka, Katja S Just, Mats O Karlsson, Lidija Konta, Rudolf Koopmann, Marjolein Kriek, Thorsten Lehr, Christina Mitropoulou, Emmanuelle Rial-Sebbag, Victoria Rollinson, Rossana Roncato, Matthias Samwald, Elke Schaeffeler, Maria Skokou, Matthias Schwab, Daniela Steinberger, Julia C Stingl, Roman Tremmel, Richard M Turner, Mandy H van Rhenen, Cristina L Dávila Fajardo, Vita Dolžan, George P Patrinos, Munir Pirmohamed, Gere Sunder-Plassmann, Giuseppe Toffoli, Henk-Jan Guchelaar, on behalf of the Ubiquitous Pharmacogenomics Consortium†

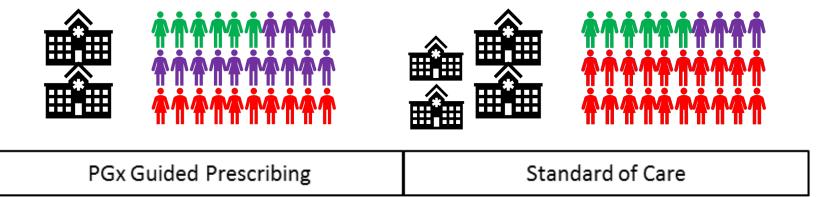

Primary analysis in patients with an actionable test result:

- clinically relevant adverse drug reaction occurred in 152 (21.0%) of 725 patients in the study group and 231 (27.7%) of 833 patients in the control group
- Odds ratio of **0.70** (95% CI 0.54-0.91); P=0.0075)

30% reduction in adverse drug reactions

Lancet 2023; 401: 347-56

Gatekeeping Analysis


Confounding Effect of Case-Mix

Real-world design: addition of centers and changes in drugs and guidelines

ĒĒ

Low toxicity profile

High toxicity profile

> Post-hoc analysis including index drug and an index drug-by-country interactions:

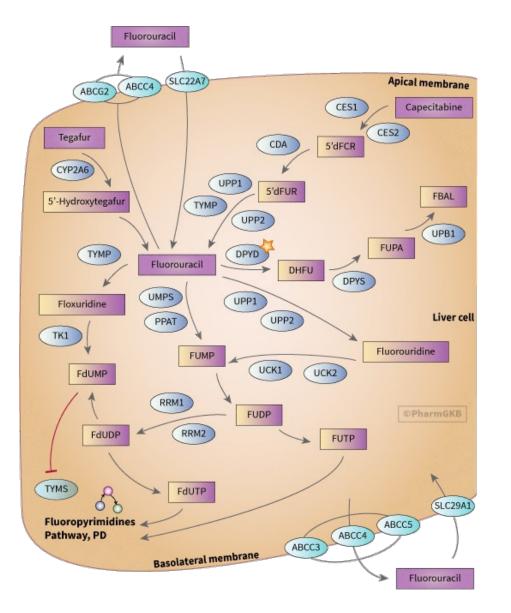
- Effect <u>decreases</u> from 0.30 to 0.13 (OR 0.87 95CI 0.70-1.12) in all patients
- Effect increases from 0.30 to 0.39 (OR 0.61 95CI 0.51-0.74) in actionables

> Changes in drugs and centers (case-mix) main contributor to effect seen on gatekeeping analysis

Effect of genotype panel still evident after correction for case mix

Reflections

- Large effect size because the panel contained well characterised drug-gene associations
- Efficacy unlikely to be impacted as guidelines based on effect of polymorphisms on drug exposure
- 70% of prescribers adopted the recommendations, 30% did not
- Test results available within 7 days, and so some patients initiated on original drugs may already have had the ADR before test result available
- We accepted grade 2-5 ADRs. Mild and moderate ADRs are important because they affect patient quality of life and impact adherence


5-Fluorouracil

- Toxicity: haematological, GI and skin
- Used in 30% of chemotherapy regimens
- Dihydropyrimidine dehydrogenase (DPYD) the important catabolic pathway
- Subject to polymorphisms which vary with ethnicity

Other drugs metabolised by DPD: Capecitabine, tegafur, 5-flucytosine

Dihydropyrimidine Dehydrogenase Polymorphisms

Variant	Frequency (%)
DPYD*2; rs3918290	0.65
DPYD*13; rs55886062	0.03
HapB3; rs75017182 + rs56038477	1.3
D949V; rs67376798	0.32

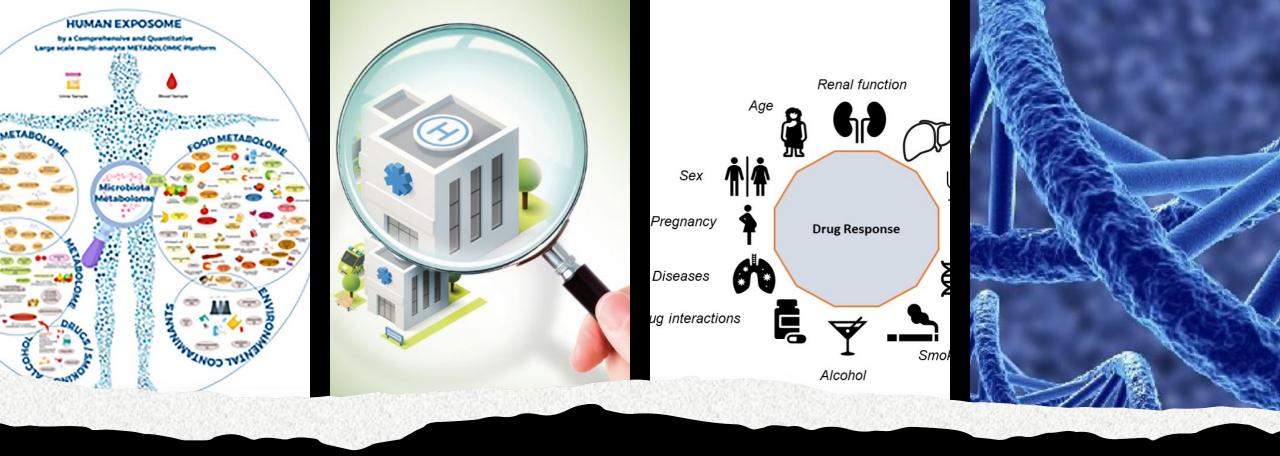
- 4 polymorphisms tested
- In the UK, 38,000 tests per year
- Derived from European populations
- Non-European ancestry inevitably labelled as wild type

DPYD International Study

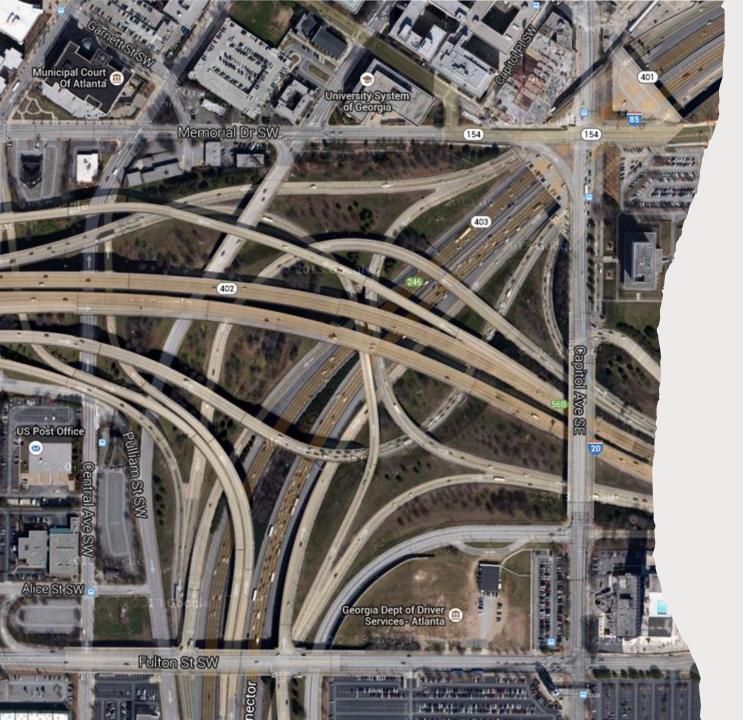
Gib	International study with the aim to recruit patients who have had Grade 3, 4, or 5 toxicity from the use of 5FU or its analogues
*	Focusing on non-Northern European ancestry populations
~	Sequence based analysis of DPYD
ğ	Assessment of functionality of the identified mutations
***	In the UK, provide evidence to increase the variants tested to reduce race inequalities
8	Of value to other countries as they introduce or expand DPYD testing now or in the future
	If anybody interested in collaborating on this, then please contact me (munirp@liverpool.ac.uk)

Pre-emptive Pharmacogenomics

- More efficient than reactive, and fits in better with existing clinical pathways
- When?
 - When first prescribed a medicine with PGx guidance
 - At a certain age, e.g. above 50
 - Newborn genome sequencing
- How do we assess utility over the long-term?


Hippocrates: what sort of person has a disease than to know what sort of disease a person has

Paracelsus: The dose is either the remedy or poison


PARESEL

MOSO DOCTOR

Osler: Variability is the law of life

Variability in Response

Summary

- An important purpose of clinical pharmacology and pharmacogenetics is to improve the benefit-harm ratio of medicines
- We need to deal with complexity

 pharmacogenomics is only one aspect of the complexity
- We currently deal with one factor, but most patients have multiple issues which need to evaluated and controlled at the same time
- In research, new technologies allow us to start to deal with complexity

Acknowledgements

The University of Liverpool

- Eunice Zhang
- Dan Carr
- Richard Turner
- Ana Alfirevic
- Anita Hanson
- Andrea Jorgensen
- Vicky Rollinson
- Innocent Asiimwe
- Plus, many others

 Funders: Dept of Health (NHS Chair of Pharmacogenetics), MRC, WT, DH, NIHR, EU-FP7

UPGx Consortium (H2020 funding)

- EU funded (grant number 668353)
- >150 people have worked on this (<u>www.upgx.eu</u>)
- Particular thanks to Henk-Jan Guchelaar and Jesse Swen who led the Consortium

NIHR Global Research Group on warfarin (War-PATH):Catriona Waitt, Karen Cohen, and many others

