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ABSTRACT: Controlling which particular members of a large protein family
are targeted by a drug is key to achieving a desired therapeutic response. In
this study, we report a rational data-driven strategy for achieving restricted
polypharmacology in the design of antitumor agents selectively targeting the
TYRO3, AXL, and MERTK (TAM) family tyrosine kinases. Our computa-
tional approach, based on the concept of fragments in structural environments
(FRASE), distills relevant chemical information from structural and
chemogenomic databases to assemble a three-dimensional inhibitor structure
directly in the protein pocket. Target engagement by the inhibitors designed
led to disruption of oncogenic phenotypes as demonstrated in enzymatic
assays and in a panel of cancer cell lines, including acute lymphoblastic and
myeloid leukemia (ALL/AML) and nonsmall cell lung cancer (NSCLC).
Structural rationale underlying the approach was corroborated by X-ray crystallography. The lead compound demonstrated
potent target inhibition in a pharmacodynamic study in leukemic mice.

■ INTRODUCTION
Polypharmacology: Embracing the Inevitable. Large

families of structurally and often functionally related proteins,
such as G-protein coupled receptors (GPCRs),1,2 protein
kinases,3,4 and more recently HDAC5 or bromodomains,6 are
the most important source of drug targets. Due to the high
intrafamily similarity, especially within smaller subfamilies, a
single small-molecule drug, in general, binds multiple family
members, presenting both a challenge and an opportunity for
drug discovery.7 Beyond the basic consideration that
promiscuous binding to multiple targets is a major cause of
adverse effects8 and general toxicity,9 it has also been shown
that excessive selectivity for a single target may be a fatal safety
concern,10 while binding several related targets could be a
prerequisite for more efficacious drug action.11 Hence, to
achieve a desired therapeutic response, a drug discoverer
should ideally be able to control the polypharmacology of a
drug candidate, that is, to disable its promiscuous binding to
unwanted targets, while enhancing potency against therapeuti-
cally relevant targets. However, controlling which particular
members of a large protein family would be inhibited by a drug

is an extremely challenging endeavor. Here we describe a data-
driven approach to design small-molecule drugs with fine-
tuned selectivity profiles in the context of highly homologous
protein targets. In our approach, 3D structures of bioactive
ligands are directly “assembled” from smaller building blocks in
the protein binding pocket.

From Virtual Screener to Virtual Chemist. Previous
computational efforts to design multitarget drugs focused on
extending bioinformatics models or scaling-up cheminfor-
matics techniques. In particular, various flavors of binding-
pocket similarity have been used to make predictions based on
the principle “similar targets bind similar ligands”.12−14

Alternatively, broad panels of computational structure−activity
relationship (SAR) models were used to predict targets for
ligand libraries.15−18 Most practical applications focused on the
two largest drug-target families: G-protein coupled receptors
(GPCRs)19 and protein kinases.20 Although highly diverse in
terms of underlying principles and assumptions, all previously
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reported approaches share one common function: they act as a
“virtual screener”, that is, receive a ligand structure as the input
and report its activity against a given target as the output.
“Virtual screeners” are highly efficient when applied to a small
panel of well-studied targets with large SAR data sets.
However, they are suboptimal for dealing with larger panels
of predominantly novel targets: first, because there are no SAR
data to develop predictive SAR models, and, second, a “virtual
screener” still needs a human chemist to feed it with newly
designed compounds. Yet, traditional SAR-based medicinal
chemistry is difficult to scale up to multitarget discovery.
Intuitively, the design of chemically novel ligands for
understudied targets may benefit from (i) thousands of
experimental structures of protein−ligand complexes, (ii)
hundreds of thousands of biological activities for those ligands
in public databases, and (iii) an intricate network of
evolutionary relationships within large protein families. Tools
are needed to jointly exploit disparate pieces of information
from heterogeneous sources. The approach to polypharmaco-
logical ligand design, that we introduce, is based on the
concept of a fragment in structural environment (FRASE). A
single FRASE extracted from a high-affinity ligand explicitly
encapsulates 3D structural information and, implicitly, SAR
and sequence alignment data. Several FRASEs extracted from
different protein−ligand complexes can be readily combined
into a novel ligand for an orphan protein target. Hence,
FRASE-based design represents a first step in the evolution of
computer-aided drug design from “virtual screener” to “virtual
chemist”.
Targeting Tumor-Survival Promoters TYRO3, AXL,

and MERTK. Here we demonstrate the potential of the
FRASE-based approach by using it to design ligands that can

interfere with the function of the TYRO3, AXL, and MERTK
(TAM) family of receptor tyrosine kinases.21 These receptors
play a physiologic role in dampening inflammatory responses, a
role that is subverted in cancer-associated myeloid cells in the
immunosuppressive tumor microenvironment.22,23 TAM
kinases, in particular MERTK, have been shown to upregulate
expression of the T cell immune checkpoint molecule PD-L1
and to promote phosphatidylserine-dependent efferocytosis
and AKT-mediated chemoresistance in tumor cells.22,24 In
addition, TAM kinases are ectopically expressed in many
human cancers, including both hematologic malignancies and
solid tumors, where they function to promote tumor cell
survival, chemoresistance, and motility.23 Consequently,
targeted inhibition of TAM family members could reverse
the immunosuppressive microenvironment and directly target
tumor cells in a wide range of cancers.
The therapeutic value of TAM inhibitors may be largely

dependent on their respective polypharmacologic profiles, both
within the TAM family and with respect to other protein
kinases. Therefore, it is important to design chemical probes
selective either for a single TAM family member or for any
combination thereof. However, controlling the intrafamily
selectivity is challenging because TAM kinases were among the
latest to evolve, and hence, they have highly similar kinase-
domain structures and near-identical ATP pockets, providing
almost no opportunity for developing intrafamily selectivity.
Here, we made use of FRASE-based design to develop
inhibitors selective for specific TAM family members and
explore their potential as anticancer agents.

Figure 1. FRASE-based approach to “assemble” inhibitors selective for specific TAM family members. (A) Example of a typical FRASE: the
constituent fragments are rendered as thick sticks (gray for the protein portion of the FRASE, blue for the ligand portion). (B) Simplified
representation of the FRASE-based design: (left to right) a target kinase (gray cartoon) with projected reference FRASEs from the database
(magenta and blue sticks). Evaluation of how individual components of a reference protein environment (magenta sticks) match the nearby target
residues (gray sticks) (the numbers represent per-residue Tscore values, for a total Tscore of 0.79). Ligand fragments from the matching FRASEs
(blue sticks) that can be used for design. (C) Adenine (cyan) and back (pink) pockets in a kinase enzyme. (D) Aligned sequences of residues lining
the back pocket show 44 pairwise differences. (E) The only amino acid position (rendered as sticks) showing variance in the adenine pocket of
TAM kinases and the X-ray structure for the template inhibitor 1 in complex with MERTK.
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■ RESULTS

FRASE-Based Design. For a long time, ligand- and
structure-based strategies in computer-aided drug design
evolved separately, one toward embracing bigger data for
more predictive and comprehensive activity models and the
other toward faster and more accurate prediction of ligand−
protein interactions.25,26 However, despite significant progress,
both strategies conserve their essential limitations. Ligand-
based approaches cannot predict activities for “orphan” targets,
and structure-based techniques still have a long way to go
before it might be possible to profile hundreds of ligands
against hundreds of targets with a suitable accuracy in a
reasonable time. FRASEs are structural descriptors that are
intended to merge the chemical and protein structure spaces to
overcome both of the above limitations. FRASE-based design
enables processing of thousands of 3D protein−ligand
complexes and tens of thousands of bioactivity data points to
find the most appropriate building blocks for new active
ligands. Moreover, the suggested building blocks are shown as
3D protein-bound poses and can be easily shuffled to yield
synthetically tractable combinations with diverse family-wide
polypharmacology profiles. A typical FRASE (Figure 1A)
includes a chemically sound fragment of a 3D protein-bound
ligand pose, e.g., a cycle and/or functional group, as well as the
nearby protein fragments (in this study, full residue structures).
There are two primary assumptions behind the FRASE-based
design: (a) a ligand has high affinity to a given protein due to
an “endorsement” by every fragment it consists of and (b) a
fragment is “good” due to its favorable interactions with its
immediate protein environment. By combining (a) and (b) we
obtain (c): if a fragment is “good” in one protein, it will also be
“good” in any other protein that features an identical structural
environment.
Conceptually, design of a new ligand for a given kinase

involves (i) identification of structural environments (stored in
the FRASE database) that match those in the binding pocket
of the kinase of interest and (ii) inspect locations and
orientations of the ligand fragments belonging to the matching
FRASEs (Figure 1B) and combine them into synthetically
tractable compounds. The algorithmic implementation of step
(i) is straightforward. First, it must be noted that all kinase
structures (either those used to create the FRASE database or
those for which ligands are to be identified) are aligned in 3D
space, thus enabling an instantaneous projection of all FRASEs
on the target structure (Figure 1B). Hence, the i-th protein
residue belonging to a structural environment from the FRASE
database (reference environment) can be directly compared to
the closest (i′-th) residue in the target protein, and the match
between them can be quantified as a function of their chemical
s i m i l a r i t y a n d p r o x i m i t y i n 3 D s p a c e ,

= − ′
′( ) TTscore exp 2i

d
ii4

2
iii

k
jjj

y
{
zzz , where dii′ is the distance between

the residue centers, and Tii′ is the Tanimoto27 similarity
between them. The total score for a reference environment is
an average over all residues in the reference protein
environment, Tscore = ⟨Tscorei⟩ (Tscore would be equal to
one if all reference residues are chemically identical to and
spatially aligned with their target counterparts). Figure 1B
exemplifies evaluation of a single reference environment with
Tscorei shown for each individual residue. The total Tscore
value in this example is 0.79, which is high enough and would
warrant the selection of the respective ligand fragment as a

potential building block for design. The database search for
matching FRASEs can be significantly restrained by setting a
particular location for the FRASE’s ligand fragment. This
would allow one to build a new ligand sequentially, by finding
the next ligand fragment close to the attachment site of the
previous one (which is the way ligands were designed in this
study). The final selection of ligand fragments is closely
associated with step (ii), that is, assembling fragments into
synthetically tractable compounds. More than one factor is
taken into consideration. First, Tscore is used to narrow down
the choice. As in any screening process, the quantitative end
point only serves to select a manageable number of hits that
can be evaluated using alternative, more time- and resource-
demanding criteria (a few thousand FRASEs are usually
selected based on Tscore). There is no clearly defined, optimal
Tscore threshold. Certainly, it should not be set significantly
lower than 0.5, but most of the times the threshold is
determined by how many FRASE hits one can process. The
next step is triage of the initial fragment hits. One notable
aspect of ligand fragments in the FRASE database is their
significant redundancy due to the fact that a fragment can be
cut out of a ligand in multiple overlapping ways (this
redundancy was intentionally allowed to maximize the
sensitivity of the database search). We remove this redundancy
by clustering on chemical similarity of the ligand fragments and
the location of their geometrical centers. Finally, binding poses
of the remaining fragments (irrespective of their Tscores) are
visually inspected, and their relevance is assessed based on the
synthetic tractability, availability of reagents, as well as the
opportunity of connecting the selected fragment (to other
fragments or the pre-existing structural template) by a
common minimal linker, such as a single bond, ether, amide,
or urea. Sometimes a fragment can be slightly modified to
facilitate its fusion with the structural template.
The FRASE database, the key prerequisite for the design,

integrates the information from 3D structures of protein−
ligand complexes, ligand structures, and their inhibitory
potencies. First, a cross-search in the Uniprot,28 PDB,29 and
PDBbind30 databases was performed to yield 2800 3D
structures of high-affinity complexes (involving 2100 unique
ligands and 230 kinases). Next, each ligand in every protein−
ligand complex was broken into fragments (cycles and acyclic
functional groups). Finally, each ligand fragment from the
previous step is combined into a single structure with the
nearby protein fragments (here, whole residues were used as
protein fragments). A total of ∼230 000 FRASEs were
identified. We observed that, on average, a single structural
environment can be found in ∼30 kinases, that is, ∼6% of the
kinome. This appears to be an acceptable balance between
uniqueness and redundancy. Indeed, if a structural environ-
ment occurs in every kinase, it would not be useful for
designing selective inhibitors, while if it occurs in only one
kinase it would only be useful for designing an inhibitor for this
particular kinase (and none other). The selectivity profile of a
FRASE-based inhibitor would be an intersection of kinase lists
that each individual FRASE is “good” for. Technical details on
the development of the database and related tools are given in
the Methods section.

Kinase Back Pocket Offers Structural Variance for
Selective TAM-Member Inhibitors. Our strategy consists of
taking a type I TAM inhibitor and expanding it to new protein
pockets featuring more significant structural differences in the
vicinity of the ligand, thus providing a better opportunity to
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tune the inhibitor selectivity for any given TAM kinase.
Structural analysis of all TAM members suggests that the “back
pocket” (Figure 1C), located between the c-helix and the
adjacent antiparallel β-sheet, displays significant structural
diversity and hence provides multiple opportunities for
enhancing inhibitors’ selectivity. The three TAM sequences
of c-helices (the rear wall of the pocket) and adjacent
antiparallel β-sheets (the ceiling) display 44 pairwise-differing
residues (Figure 1D), whose side chains may either directly
interact with the ligand or induce changes in relative
orientations of these structural modules. This structural
diversity in the back pocket is in sharp contrast with the
high conservation of the adenine pocket, to which typical type
I kinase inhibitors, such as our pyridine−pyrimidine 1,31 bind.
In this pocket, there is only one amino acid position showing
variation across the TAM family: MERTK:Ile650 vs
AXL:Met599 vs TYRO3:Ala581 (Figure 1E). In all three
cases, the differing residues do not have close contacts or make
high-energy interactions with the ligand. Hence, we hypothe-
sized that the back pocket (Figure 1C,E) would be a more
suitable target for pyridine−pyrimidine expansion. A sequential
FRASE-based strategy was applied to design TAM ligands
interacting with the back pocket. Inhibitor 1 was used as a

structural template with its 2-amino nitrogen on the
pyrimidine ring as an attachment site for a new fragment.
Then, the position of each further fragment was constrained by
the proximity of the previous one and lying on an imaginary
line pointing toward the back pocket.

Opening the Back Door and Reaching the Back
Pocket. A first step in expanding the type I inhibitor 1 toward
the back pocket was to find a spacer that would “deliver” a
functional group of choice to the back pocket while avoiding
bad contacts with the gatekeeper residue (MERTK:Leu671/
AXL:Leu621/TYRO3:Leu603). To this end, we have extracted
from our FRASE database those FRASEs that would possess
the required spacer properties and match the respective
structural environments of TAM family members (1786
FRASEs from 73 unique PDB structures representing 30
kinases). The triage process yielded 203 nonredundant
fragments from which several most minimalistic fragments
were retained as relevant for the design (Figure 2A). They
were extracted from the following structures: AKT2 (PDB:
3D0E; Tscore: 0.74), CHK1 (4FST/0.53), and MELK
(4UMP/0.52, 4UMT/0.57, 4UMU/0.56) kinases. The re-
spective TAM inhibitor 2 was readily inferred, synthesized, and
tested in an enzymatic microcapillary electrophoresis (MCE)

Figure 2. Steps toward potent TAM back-pocket binders. (A) Growing the aryl−alkyne−aryl spacer: template compound 1 (green), aryl−alkyne
(cyan) and aryl (magenta) FRASEs, and TAM/FLT3 profiles of inhibitors (IC50 values given in nM) with a partial (2) and full (3) spacers. (B)
Filling the back pocket by aromatic groups: template compound (green), source FRASEs (magenta), and sample inhibitors 4−6 not showing
sufficient potency and selectivity. (C) Filling the back pocket with smaller aliphatic groups: template compound (green), source FRASEs
(magenta), and sample inhibitors 7 and 8 showing high potency and promising selectivity. (D) Co-crystal structure of 7 in complex with MERTK
and its major interactions with the adenine pocket (Pro672, Phe673, and Glu595) and back pocket (Lys619).
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assay32 (Figure 2A). It had low nanomolar IC50 values against
MERTK and TYRO3, and its potency against AXL was
approximately one order of magnitude weaker (Figure 2A and
Supporting Information Table S1 for a full account of IC50
values in this study). The new spacer is expected to efficiently
deliver any functional group to the back pocket, and any
substitution at the alkyne-bound methyl would be past the
gatekeeper residue. The next step was to identify a fragment
that would penetrate into the back pocket. One of the relevant
FRASEs, donated by CHK1 (4FST), features an alkyne−aryl
fragment that aligns with the aryl−alkyne group of 2. We also
searched for fragments and features located at the entry to the
back pocket and identified 151 such fragments (from 9 unique
PDB structures). The most frequent feature at this location
was a hydrogen bond (H-bond) acceptor pointing toward the
large lobe (Figure 2B, top), which suggested using a 2-pyridine
ring as an aromatic scaffold within the back pocket. The
respective structural environments come from 6 PDB
structures from 4 unique kinases (VEGFR2, c-Met, and
p38α) with Tscores ranging from 0.50 to 0.84. Combining this
2-pyridine ring with 2 resulted in 3 (Figure 2A). Although it
demonstrated reduced potencies against all TAM members
(Figure 2A), inhibitor 3 provides a promising template to
explore the back-pocket SAR.
Small Chemical Modifications in the Back Pocket

Alter Intrafamily Selectivity. To explore the chemical space

to fill the back pocket, we used two one-point queries, with the
radius of 2 Å, that mostly cover its volume. One of the queries
yielded 1837 fragment hits (119 nonredundant, 30 unique
PDB, 7 kinases) and the other 155 hits (21 nonredundant, 11
unique PDB, 8 kinases). The fragments from both queries can
be split into two broad categories: rigid, flat aromatic groups,
and more flexible and bulky aliphatic ones (a few fragments
featured both aromatic and aliphatic moieties). Our first step
was to investigate the impact of aromatic groups that could be
readily attached to template 3 (such groups were observed in
several p38α structures at the previous step of design). In the
course of further visual analysis, a set of aromatic fillings were
retained to inspire our ligand design. These fragments were
“donated” by eight diverse kinases including BRAF1 (PDB:
3NNW, Tscore: 0.98), c-MET (3EFK/0.54, 2RFN/0.53),
FAK2 (3FZT, 0.53), HCK (2C0O/0.69), JNK2 (3NPC/0.99),
JNK3 (3E92/0.92, 3D7Z/0.89, 3DA6/0.65), p38α (2BAJ/
0.93, 3BYS/0.91, 3HV3/0.87, 3NNV/0.87, 3BYU/0.84,
3HV5/0.84, 3HV4/0.84, 3GCU/0.84, 3GCV/0.83, 1W82/
0.83, 2OFV/0.80, 3NNX/0.78, 3HV6/0.78, 3HV7/0.72,
3GCQ/0.80, 1KV2/0.69, 3NNU/0.68), and PLK (3DB6/
0.70). A series of such aromatic substituents were attached to 3
through a minimal linker (see examples in Figure 2B). The
respective inhibitors 4−6 have slightly improved potencies
against TAM members showing, respectively, pan-TAM (4),
MERTK/TYRO3/FLT3 (5), and MERTK/FLT3 (6) profiles.

Figure 3. Kinome selectivity profiles. MIB-MS kinome profiles for inhibitor 10 (see structure and TAM/FLT3 IC50 values) and the initial template
1. Each kinase features an orange (inhibitor 1) and a blue (inhibitor 10) bar, with bar heights corresponding to log2 of the inhibitor/control ratio.
Thresholds of −1 and 1 (shown in dotted lines) specify significant enrichment or decrease of kinases on the beads with respect to control. The
brackets with labels on the top of the charts indicate the respective kinase family.
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Unfortunately, the potency improvement achieved for 4−6 is
not sufficient to warrant further progression of these
compounds toward in vivo application. Hence, we explored
flexible, aliphatic back-pocket-filling fragments located in
potentially more diverse structural environments. They
originate from 5 kinases, including BRAF1 (PDB: 3NNW,
Tscore: 0.98), FAK2 (3FZT, 0.53), JNK2 (3DS6/0.66), p38α
(3F82/0.84, 3BYS/0.91, 3NNV/0.87, 3CTQ/0.85, 3BYU/
0.84, 3E93/0.80, 2OFV/0.80, 3NNX/0.78, 2OG8/0.71,
3P7A/0.69, 1W83/0.69, 3P7C/0.67, 3GCQ/0.80, 3P7B/
0.75, 3P79/0.75, 1WBS/0.71, 3NNU/0.68), and TIE2
(2OO8, 0.72). Incorporation of these aliphatic fragments in
the template compound was less straightforward synthetically
than in the previous steps of the design. We eventually
developed a large series of modified inhibitors whose
“decoration” in the back pocket closely matches the respective

FRASEs. Three of them, inhibitors 7−9, are exemplified in
Figure 2C and show significant improvement in potency as
well as a higher diversity of selectivity profiles compared to 4−
6. In particular, compound 7 (UNC3437A) is primarily
selective for MERTK with slightly lower potency against
FLT3; 8 is clearly AXL-biased, a remarkable result since none
of our previously published inhibitors were selective for AXL;
and 9 is primarily a TYRO3-biased inhibitor with slightly lower
MERTK potency. The sensitivity of the TAM/FLT3
polypharmacology profile to small chemical changes demon-
strates the high potential of FRASE-based design to provide a
rational method of optimization. To corroborate the structural
rationale underlying the approach, we solved the cocrystal
structure of MERTK in complex with inhibitor 7 (Figure 3d
and Supporting Information Table S2). The structure
confirmed that indeed the pyridine-dioxolane group is bound

Figure 4. Target engagement in cellular and animal tumor models. Compound 10 inhibits MERTK and AXL phosphorylation, decreases colony
forming potential, and induces cell death in tumor cell lines. (A) 697 ALL cells (pMERTK assay) and A549 NSCLC cells (pAXL assay) were
cultured with 10 or vehicle for 1 h and then treated with pervanadate phosphatase inhibitor to stabilize phosphorylated proteins. MERTK and AXL
were immunoprecipitated from cell lysates and phosphorylated, and total MERTK or AXL proteins were detected by an immunoblot.
Phosphorylated and total proteins were quantitated by densitometry. (B) NSCLC (A549 and COLO-699) cells were cultured in soft agar overlaid
with medium containing 10 or vehicle only for 14 days. Media and 10 were refreshed every 3 days. (C) Kasumi-1 and NOMO-1 AML cells were
cultured with 10 or a vehicle for 72 h. Then cells were stained with PoPro-1-iodide (PoPro) and propidium iodide (PI) dyes, and apoptotic (PoPro
+, PI−) and dead (PI+) cells were detected by flow cytometry. Mean values and standard errors from 3 to 4 independent experiments are shown.
Statistically significant differences relative to the vehicle were determined using 1-way ANOVA (**p < 0.01, ***p < 0.001). (D) Compound 10
inhibits MERTK phosphorylation in bone marrow leukemia cells in vivo. NSG mice were transplanted with 697 human leukemia cells, and
leukemic mice were treated with a single dose of 60 mg/kg of 10 or saline vehicle (VEH) by intraperitoneal injection. Bone marrow cells were
isolated from femurs 2 h later and incubated with a pervanadate phosphatase inhibitor for 10 min to stabilize phosphoproteins. Phosphorylated and
total human MERTK proteins were quantitated by densitometry. The ratio of phosphorylated and total MERTK proteins was determined for each
sample, and values relative to the mean for vehicle-treated mice in each experiment were determined. Mean values and standard errors derived from
two independent experiments are shown (**p = 0.0026, student’s unpaired t test).
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to the back pocket extended toward the small lobe, consistent
with the respective FRASE locations. On the other hand, the
pyridine−pyrimidine core binding to the adenine pocket
featured the same interactions with hinge residues Pro672,
Phe673, and Glu595 or Asp678 as the template pyridine−
pyrimidine compound 1. Overall, the X-ray structure
confirmed the assumptions underlying the design of the
novel series and, more generally, the utility of the FRASE-
based approach for modulating TAM/FLT3 selectivity profiles.
Kinome Profiling and in Vivo Pharmacokinetics. We

selected a pan-TAM inhibitor 10 (UNC4042A) (Figure 3) as a
lead compound for more comprehensive biological character-
ization. At this initial step of the series evaluation, a probe with
a broad TAM potency spectrum was intentionally chosen to
test whether the in vitro inhibitory potency translates into
target engagement in a broad range of cellular and in vivo
assays.
We next sought to know whether, and how, extending type I

inhibitors toward the back pocket would affect the inhibitors’
kinome-wide polypharmacology. To this end, we compared the
selectivity profile of inhibitor 10 to that of inhibitor 1 (Figure
1), the initial chemical template for FRASE-based design.
Multiplexed inhibitor bead kinome enrichment coupled to
quantitative mass spectrometry analysis (MIB-MS) was used to
determine specificity of the compounds in an unbiased
manner. In MIB-MS, mixtures of Sepharose beads with
covalently immobilized, linker-adapted kinase inhibitors are
used to capture a large portion of the kinome present in the
analyzed cell lysate.33 The identity of the kinases captured is
then established by means of MS analysis. In a competition
MIB-MS assay, an inhibitor is preincubated with the lysate
prior to the analysis, so that the inhibitor-bound kinases would
not be captured by the beads. The kinases captured with and
without the inhibitor present in lysate can then be compared to
determine which kinases were down- or upregulated by the
inhibitor.
In this study, NOMO-1 human AML cells were treated with

DMSO, 1, or 10 (both at 100 nM) for 1 h, and then, kinases
were enriched using MIBs and analyzed by LC-MS/MS. A set
of 222 kinases were quantified across the samples using a label-
free approach. Inhibitor 1 showed significantly lower kinome
selectivity compared to 10 (Figure 3); 62 kinases showed
lower enrichment on the beads upon treatment with 1
compared to DMSO control, whereas 27 kinases were
decreased upon treatment with 10. Of these 27 kinases, 8
were significantly decreased (p < 0.05 and log2 ratio 10/
control ≥2). In addition to higher selectivity, the kinases
decreased by 10 are not a mere subset of the 62 kinases
decreased by 1, suggesting a different mode of action. Detailed
MIB-MS data, including results for inhibitors 1 and 10 at 1
μM, are given in the Supporting Information “FRASE-
Proteomics.xlsx”.
We also assessed whether the lead compound is suitable for

in vivo studies. To this end, pharmacokinetic (PK) studies in
mice have been performed with compound 10 administered
via intravenous (i.v.), intraperitoneal (i.p.), and oral (p.o.)
routes. As can be seen from the evaluation of drug
concentration in plasma over time, 10 has a PK profile
suitable for in vivo application in murine models (Supporting
Information Figure S1, Cmax = 435 ng/mL; AUCpo = 1661 ng
h/mL, and T1/2 = 4.97 h via the i.p. route). The weak oral
bioavailability of compound 10 precludes the p.o. route.
However, oral administration is not crucial for animal studies

and can be addressed by further chemical optimization. Details
of the in vivo PK study are described in the Supporting
Information.

Target Engagement in Cellular and Animal Models.
To confirm potent on-target inhibition and tumor suppression
activity mediated by the lead compound 10, we evaluated the
effects of treatment with 10 in solid tumor and hematologic
malignancy models. First, we determined target engagement by
monitoring the level of active, phosphorylated MERTK, and
AXL in cancer cells as a function of inhibitor concentration. As
expected, 10 inhibited both MERTK (IC50 = 28 nM, 95%
confidence interval = 16−52 nM) and AXL (IC50 = 32 nM,
95% confidence interval = 18−57 nM) at nanomolar
concentrations (Figure 4A and Supporting Information Figure
S2A,B). Near complete inhibition of pMERTK and pAXL was
observed in cells treated with higher concentrations of 10. This
assay provides a potency level reference for pharmacologic
effects of 10 that might be observed in cellular tumor models
and be attributable to MERTK or AXL inhibition.
Consistent with previous data demonstrating oncogenic

roles for MERTK in AML cells and for both MERTK and AXL
in NSCLC cells,34,35 treatment with 10 mediated potent
inhibition of colony formation in soft agar cultures of both
AML and NSCLC cell lines (Figure 4B and Supporting
Information Figure S2C). More specifically, both OCI-AML5
AML cells and COLO-699 NSCLC cells were very sensitive to
10, with concentrations as low as 50 nM mediating a 70%
reduction in colony number and complete abrogation of
colony formation in response to treatment with 300 nM 10.
The NOMO-1 AML and A549 NSCLC cell lines were
sensitive to 10 as well, although with reduced potency
compared to the other cell lines. In these cases, a 300 nM
concentration was required to affect a significant 60−75%
reduction in colony number, perhaps indicating a requirement
for more complete target inhibition. In addition, treatment
with 300 nM 10 was sufficient to induce tumor cell death in
67% and 41% of Kasumi-1 and NOMO-1 AML cells,
respectively (Figure 4C).
Consistent with the favorable PK profile for 10 in mice,

treatment with 10 also inhibited MERTK phosphorylation in
vivo. Immune compromised NOD/SCID/IL2Rgamma−/−
(NSG) mice were inoculated intravenously with human B-
cell ALL cells to generate orthotopic xenografts, and mice with
advanced leukemia were treated with a single 60 mg/kg dose of
10 administered by i.p. injection. Bone marrow cells were
collected 2 h post-treatment and phosphorylated, and total
human MERTK proteins were detected by immunoblot.
MERTK phosphoprotein was significantly decreased in
leukemia cells collected from mice treated with 10 relative to
mice treated with a vehicle (0.23 ± 0.116 versus 1.00 ± 0.031,
p = 0.0026) (Figure 4D and Supporting Information Figure
S2D). These pharmacodynamic data confirm inhibition of
MERTK mediated by 10 in vivo and demonstrate the utility of
10 for translational studies utilizing murine models.

■ DISCUSSION AND CONCLUSIONS
FRASE-Based Series of in Vivo Antitumor Agents. The

enzymatic, structural, cellular, and in vivo data obtained in this
study suggest that the pyridine−pyrimidine−alkyne series
represent useful in vivo chemical probes with readily adjustable
intra-TAM/FLT3 selectivity profiles and the potential to
significantly affect their kinome-wide polypharmacology
profiles. This is exemplified by the compound 10, which
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shows an improved kinome selectivity profile in cells compared
to the initial chemical template 1, cell-based activity consistent
with the presumed pharmacology of the target, abrogation of
oncogenic phenotypes and induction of cytotoxicity in cell-
based assays, chemical stability, and a SAR profile suggestive of
a specific interaction with the target.36 We have shown that
small chemical changes, suggested by FRASE analysis, induce
significantly different selectivity profiles within the TAM
family. Hence, probes with varying TAM and kinome-wide
selectivity can be readily derived using additional FRASEs.
Development of a more comprehensive probe set would enable
a more specific analysis of the role of the TAM tyrosine kinase
family and individual members in their physiologic and
pathologic functions, including prevention of chronic inflam-
matory responses and autoimmunity. In particular, availability
of more selective kinase inhibitors with specific TAM profiles
may facilitate a better understanding of the extent to which
inhibition of individual or all TAM kinases may relieve the
deleterious immunosuppressive action of tumor-associated
macrophages and myeloid-derived suppressor cells. Selective
and potent inhibition would also reverse the overexpressed
TAM kinase action to drive tumor cell survival and
chemoresistance. Remarkably, these probes have been
designed with the help of a “virtual medicinal chemist”, a
cheminformatics technique that is able to “assemble” new
bioactive compounds based on available 3D structures and
chemogenomic data.
Interaction−Activity Relationships. We have chosen the

polypharmacology of TAM kinase inhibitors as an opportune
test case, given the potential importance of TAM inhibitors for
cancer therapy.23 While the focus of this study was on protein
kinases, we expect the FRASE approach to be applicable to any
other protein family, provided there is a sufficient amount of
3D and SAR data, and even across protein families. Indeed,
FRASE could potentially serve as an informational key for data
integration across multiple protein families, so that structures
and data abundant in one family, such as protein kinases,
would benefit protein classes with sparse structure−activity
information. Such extrapolation of SAR beyond a given
protein, or even a protein family, should be possible due to
the malleable redundancy of FRASE descriptors. That is, the
size of ligand and protein fragments constituting a single
FRASE can be set small enough for similar structural
environments to occur in multiple structurally diverse proteins.
Hence, FRASE-based design might overcome some funda-
mental limitations of SAR analysis and structure-based design.
The traditional SAR analysis is target-blind: no structural or
sequence similarity between the target proteins is being
considered. The activity (or the target) is identified by a
label, and if the labels in two SAR data sets are different, the
sets cannot be cross-linked irrespective of how similar the
respective target proteins are. New compounds are prioritized
for synthesis based on a formal or informal examination of
chemical similarity between active and inactive compounds. At
the same time, structure-based design is historically SAR-blind.
That is, a new compound is prioritized for synthesis based on a
computed or an ad hoc assessment of its binding affinity to the
protein of interest. There is no formal algorithm that allows
direct involvement of available SAR data in this decision.
FRASEs, par excellence, jointly exploit explicit representations
of both ligand and protein structures, thus converting
conventional SAR into interaction−activity relationships to
guide construction and prioritization of new compounds for

synthesis. Here, we have shown that even unweighted FRASEs,
i.e., those whose “goodness” was inferred from a mere
occurrence in a high-affinity complex, can be effectively used
as building blocks for biologically active compounds. Future
studies will focus on development and application of
algorithms to identify FRASEs that are more likely than others
to be “good” and to quantify the degree of “goodness”. This
can potentially be achieved through a combination of machine
learning techniques with a proven efficiency in chemo-
informatics37,38 and specialized affinity assessment techniques
developed for structure-based design.39−41

■ METHODS
Methods and any associated references are available in the Supporting
Information.
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B.; Gloriam, D. E. Trends in GPCR drug discovery: new agents,

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b08660
J. Am. Chem. Soc. 2019, 141, 15700−15709

15707

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08660/suppl_file/ja9b08660_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08660/suppl_file/ja9b08660_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/jacs.9b08660
https://drive.google.com/open?id=1xkIIdMDz_XMZdBBVikmivr8RVRoX9Q6X
https://drive.google.com/open?id=1xkIIdMDz_XMZdBBVikmivr8RVRoX9Q6X
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08660/suppl_file/ja9b08660_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08660/suppl_file/ja9b08660_si_002.zip
mailto:xiaodonw@unc.edu
mailto:dmitri.kireev@unc.edu
http://orcid.org/0000-0002-6833-6788
http://orcid.org/0000-0003-4496-7312
http://orcid.org/0000-0002-4736-9855
http://orcid.org/0000-0002-2415-2215
http://orcid.org/0000-0003-3293-7538
http://orcid.org/0000-0001-8479-8555
http://dx.doi.org/10.1021/jacs.9b08660


targets and indications. Nat. Rev. Drug Discovery 2017, 16 (12), 829−
42.
(3) Cohen, P. A.; Alessi, D. R. Kinase Drug Discovery − What’s
Next in the Field? ACS Chem. Biol. 2013, 8 (1), 96−104.
(4) Wu, P.; Nielsen, T. E.; Clausen, M. H. Small-molecule kinase
inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today
2016, 21 (1), 5−10.
(5) Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer
Development and Therapy. Cold Spring Harbor Perspect. Med. 2016, 6
(10), No. a026831.
(6) Theodoulou, N. H.; Tomkinson, N. C.; Prinjha, R. K.;
Humphreys, P. G. Clinical progress and pharmacology of small
molecule bromodomain inhibitors. Curr. Opin. Chem. Biol. 2016, 33,
58−66.
(7) Barnash, K. D.; James, L. I.; Frye, S. V. Target class drug
discovery. Nat. Chem. Biol. 2017, 13 (10), 1053−6.
(8) Edwards, I. R.; Aronson, J. K. Adverse drug reactions:
definitions, diagnosis, and management. Lancet 2000, 356 (9237),
1255−9.
(9) Smith, G. F. Designing Drugs to Avoid Toxicity. Prog. Med.
Chem. 2011, 50, 1−47.
(10) Grosser, T.; Fries, S.; FitzGerald, G. A. Biological basis for the
cardiovascular consequences of COX-2 inhibition: therapeutic
challenges and opportunities. J. Clin. Invest. 2005, 116 (1), 4−15.
(11) Roth, B. L.; Sheffler, D. J.; Kroeze, W. K. Magic shotguns versus
magic bullets: selectively non-selective drugs for mood disorders and
schizophrenia. Nat. Rev. Drug Discovery 2004, 3 (4), 353−9.
(12) Zavodszky, M. I.; Rohatgi, A.; Van Voorst, J. R.; Yan, H.; Kuhn,
L. A. Scoring ligand similarity in structure-based virtual screening. J.
Mol. Recognit. 2009, 22 (4), 280−292.
(13) Vulpetti, A.; Kalliokoski, T.; Milletti, F. Chemogenomics in
drug discovery: computational methods based on the comparison of
binding sites. Future Med. Chem. 2012, 4 (15), 1971−9.
(14) Glinca, S.; Klebe, G. Cavities Tell More than Sequences:
Exploring Functional Relationships of Proteases via Binding Pockets.
J. Chem. Inf. Model. 2013, 53 (8), 2082−92.
(15) Keiser, M. J.; Setola, V.; Irwin, J. J.; Laggner, C.; Abbas, A. I.;
Hufeisen, S. J.; Jensen, N. H.; Kuijer, M. B.; Matos, R. C.; Tran, T. B.;
Whaley, R.; Glennon, R. A.; Hert, J.; Thomas, K. L. H.; Edwards, D.
D.; Shoichet, B. K.; Roth, B. L. Predicting new molecular targets for
known drugs. Nature 2009, 462 (7270), 175−81.
(16) Lounkine, E.; Keiser, M. J.; Whitebread, S.; Mikhailov, D.;
Hamon, J.; Jenkins, J. L.; Lavan, P.; Weber, E.; Doak, A. K.; Cote, S.;
Shoichet, B. K.; Urban, L. Large-scale prediction and testing of drug
activity on side-effect targets. Nature 2012, 486 (7403), 361−7.
(17) Cheng, F.; Zhou, Y.; Li, J.; Li, W.; Liu, G.; Tang, Y. Prediction
of chemical−protein interactions: multitarget-QSAR versus computa-
tional chemogenomic methods. Mol. BioSyst. 2012, 8 (9), 2373.
(18) Martin, E.; Mukherjee, P.; Sullivan, D.; Jansen, J. Profile-QSAR:
A Novel meta-QSAR Method that Combines Activities across the
Kinase Family To Accurately Predict Affinity, Selectivity, and Cellular
Activity. J. Chem. Inf. Model. 2011, 51 (8), 1942−56.
(19) Besnard, J.; Ruda, G. F.; Setola, V.; Abecassis, K.; Rodriguiz, R.
M.; Huang, X.-P.; Norval, S.; Sassano, M. F.; Shin, A. I.; Webster, L.
A.; Simeons, F. R. C.; Stojanovski, L.; Prat, A.; Seidah, N. G.;
Constam, D. B.; Bickerton, G. R.; Read, K. D.; Wetsel, W. C.; Gilbert,
I. H.; Roth, B. L.; Hopkins, A. L. Automated design of ligands to
polypharmacological profiles. Nature 2012, 492 (7428), 215−20.
(20) Erickson, J. A.; Mader, M. M.; Watson, I. A.; Webster, Y. W.;
Higgs, R. E.; Bell, M. A.; Vieth, M. Structure-guided expansion of
kinase fragment libraries driven by support vector machine models.
Biochim. Biophys. Acta, Proteins Proteomics 2010, 1804 (3), 642−52.
(21) Linger, R. M. A.; Keating, A. K.; Earp, H. S.; Graham, D. K.
TAM Receptor Tyrosine Kinases: Biologic Functions, Signaling, and
Potential Therapeutic Targeting in Human Cancer. In Adv. Cancer
Res.; George, F. V. W., George, K, Eds.; Academic Press; 2008; pp
35−83.
(22) Kasikara, C.; Kumar, S.; Kimani, S.; Tsou, W.-I.; Geng, K.;
Davra, V.; Sriram, G.; Devoe, C.; Nguyen, K-QN; Antes, A.; Krantz,

A.; Rymarczyk, G.; Wilczynski, A.; Empig, C.; Freimark, B.; Gray, M.;
Schlunegger, K.; Hutchins, J.; Kotenko, S. V.; Birge, R. B.
Phosphatidylserine Sensing by TAM Receptors Regulates AKT-
Dependent Chemoresistance and PD-L1 Expression. Mol. Cancer Res.
2017, 15 (6), 753−64.
(23) Graham, D. K.; DeRyckere, D.; Davies, K. D.; Earp, H. S. The
TAM family: phosphatidylserine-sensing receptor tyrosine kinases
gone awry in cancer. Nat. Rev. Cancer 2014, 14 (12), 769−85.
(24) Nguyen, K-QN; Tsou, W.-I.; Calarese, D. A.; Kimani, S. G.;
Singh, S.; Hsieh, S.; Liu, Y.; Lu, B.; Wu, Y.; Garforth, S. J.; Almo, S.
C.; Kotenko, S. V.; Birge, R. B. Overexpression of MERTK receptor
tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-
of-function capacity. J. Biol. Chem. 2014, 289 (37), 25737−49.
(25) Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.;
Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. C.;
Todeschini, R.; Consonni, V.; Kuz’Min, V. E.; Cramer, R.; Benigni,
R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.;
Tropsha, A. QSAR modeling: Where have you been? Where are you
going to? J. Med. Chem. 2014, 57 (12), 4977−5010.
(26) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.;
Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; Romero,
D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; Damm,
W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.;
Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.; Berne, B.
J.; Friesner, R. A.; Abel, R. Accurate and Reliable Prediction of
Relative Ligand Binding Potency in Prospective Drug Discovery by
Way of a Modern Free-Energy Calculation Protocol and Force Field.
J. Am. Chem. Soc. 2015, 137 (7), 2695−703.
(27) Nikolova, N.; Jaworska, J. Approaches to Measure Chemical
Similarity− a Review. QSAR Comb. Sci. 2003, 22 (910), 1006−26.
(28) Apweiler, R.; Bairoch, A.; Wu, C. H.; Barker, W. C.;
Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.;
Magrane, M. UniProt: the universal protein knowledgebase. Nucleic
Acids Res. 2004, 32, 115−119.
(29) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 1999/12/11. 2000, 28 (1), 235−42.
(30) Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind database:
collection of binding affinities for protein-ligand complexes with
known three-dimensional structures. J. Med. Chem. 2004, 47 (12),
2977−80.
(31) Zhang, W.; Zhang, D.; Stashko, M. A.; DeRyckere, D.; Hunter,
D.; Kireev, D.; Miley, M. J.; Cummings, C.; Lee, M.; Norris-Drouin,
J.; Stewart, W. M.; Sather, S.; Zhou, Y.; Kirkpatrick, G.; Machius, M.;
Janzen, W. P.; Earp, H. S.; Graham, D. K.; Frye, S. V.; Wang, X.
Pseudo-cyclization through intramolecular hydrogen bond enables
discovery of pyridine substituted pyrimidines as new mer kinase
inhibitors. J. Med. Chem. 2013, 56 (23), 9683−92.
(32) Zhang, W.; DeRyckere, D.; Hunter, D.; Liu, J.; Stashko, M. A.;
Minson, K. A.; Cummings, C. T.; Lee, M.; Glaros, T. G.; Newton, D.
L.; Sather, S.; Zhang, D.; Kireev, D.; Janzen, W. P.; Earp, H. S.;
Graham, D. K.; Frye, S. V.; Wang, X. UNC2025, a potent and orally
bioavailable MER/FLT3 dual inhibitor. J. Med. Chem. 2014, 57 (16),
7031−41.
(33) Duncan, J. S.; Whittle, M. C.; Nakamura, K.; Abell, A. N.;
Midland, A. A.; Zawistowski, J. S.; Johnson, N. L.; Granger, D. A.;
Jordan, N. V.; Darr, D. B.; Usary, J.; Kuan, P. F.; Smalley, D. M.;
Major, B.; He, X.; Hoadley, K. A.; Zhou, B.; Sharpless, N. E.; Perou,
C. M.; Kim, W. Y.; Gomez, S. M.; Chen, X.; Jin, J.; Frye, S. V.; Earp,
H. S.; Graves, L. M.; Johnson, G. L. Dynamic reprogramming of the
kinome in response to targeted MEK inhibition in triple-negative
breast cancer. Cell 2012, 149 (2), 307−21.
(34) Lee-Sherick, A. B.; Eisenman, K. M.; Sather, S.; McGranahan,
A.; Armistead, P. M.; McGary, C. S.; Hunsucker, S. A.; Schlegel, J.;
Martinson, H.; Cannon, C.; Keating, A. K.; Earp, H. S.; Liang, X.;
DeRyckere, D.; Graham, D. K. Aberrant Mer receptor tyrosine kinase
expression contributes to leukemogenesis in acute myeloid leukemia.
Oncogene 2013, 32 (46), 5359−68.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b08660
J. Am. Chem. Soc. 2019, 141, 15700−15709

15708

http://dx.doi.org/10.1021/jacs.9b08660


(35) Linger, R. M. A.; Cohen, R. A.; Cummings, C. T.; Sather, S.;
Migdall-Wilson, J.; Middleton, D. H. G.; Lu, X.; Baroń, A. E.;
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