CURRICULUM VITAE

PERSONAL INFORMATION

Shawn David Hingtgen, Ph.D. 4212 Marsico Hall, 125 Mason Farm Rd.; Chapel Hill, NC 27599 <u>hingtgen@email.unc.edu;</u> 919-537-3827

EDUCATION

The University of Iowa, Iowa City, IA. Dept. of Anatomy and Cell Biology		Doctor of Philosophy (Ph.D.)	1998-2004
The University of Iowa, Iowa City, IA. Bachelor of Science		Biology	1994-1998
PROFESSIONAL EXPERIENCE			
04/2023-Present	Professor, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC		
04/2018-Present		Division of Molecular Pharmaceutics, UN th Carolina at Chapel Hill, Chapel Hill, NO	•
04/2012-03/2018	2018 Assistant Professor, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC		
09/2106-present	North Carolina at Cha	Department of Neurosurgery, UNC School pel Hill, Chapel Hill, NC ppointment that coincides with my primary	· · · · ·
06/2010-03/2012	Instructor, Departme	nt of Radiology, Massachusetts General He	ospital/Harvard Medical School,

02/2008-06/2010 **Post-doctoral Fellow**, Dept. of Radiology, Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA

- Advisor: Khalid Shah
- Gained experience in mouse model of surgical resection
- Developed new anti-cancer molecules for delivery by therapeutic stem cells

02/2005-02/2008 **Post-doctoral**

Post-doctoral Fellow, Dept. of Radiology, Center for Molecular Imaging Research (CMIR), Massachusetts General Hospital/Harvard Medical School, Boston, MA

• Advisor: Ralf Weissleder, Khalid Shah

Boston, MA.

- Developed novel imaging tools for non-invasive tracking of stem cell therapies for brain cancer and novel anticancer molecules
- Gained experience in molecular biology, molecular imaging, animal surgery

HONORS AND AWARDS

2021	American Institute for Me	dical and Biological Engineering College	e of Fellows
2018	UNC Hettleman Prize for	Scholarly and Artistic Achievement by Y	Young Faculty
2014	Young Investigator Award	d, Society for Neuro-Oncology	
2013	Finalist, The Damon Run	yon-Rachleff Innovation Award	
	Shawn D. Hingtgen	Page 1 of 30	Prepared: 2022

2010	Keystone Symposia Underrepresented Minority Scholarship
2008	American Brain Tumor Association Post-doctoral Research Fellowship
2005	National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Minority Travel Award
2005	Caroline tum Suden/Frances A. Hellebrandt Professional Opportunity Award
2004	College of Medicine Public Health Research Week Award
2004	National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Minority Travel Award
2004	Caroline tum Suden/Frances A. Hellebrandt Professional Opportunity Award
2003	New Investigator Award, Society for Free Radical Biology and Medicine
2003	National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Minority Travel Award
2003	Caroline tum Suden/Frances A. Hellebrandt Professional Opportunity Award
2002	Merck New Investigator Award
2001	Honorable Mention-James F. Jackobsen Forum
1994-98	Undergraduate Scholar Assistant
100100	

1994-98 Opportunity at Iowa Underrepresented Minority Scholarship

BIBLIOGRAPHY & PRODUCTS OF SCHOLARSHIP

BOOKS AND CHAPTERS

Citation statistics from Google Scholar: *h-index: 26; Citations: 2755 (2284 in past 5 years)*

- 1. Hingtgen, S.D. Multi-functional Molecules for Interrogating Stem Cell-based Therapeutics. *Stem Cell Therapeutics for Cancer*. Hoboken, NJ, Wiley Publishing, 2013, pp. 257-272
- 2. Sheets, K.T., Bago, J.R., Hingtgen, S.D. Delivery of cytotoxic neural stem cells with biodegradable scaffolds for treatment of postoperative brain cancer. *Methods in Targeted Drug Delivery*, Springer Publishing, 2018.

REFERRED PAPERS/ARTICLES

- 1. Enhancing TRAIL-based Therapy for Glioblastoma Through Combining the Constitutive TRAIL-secreting Induced Neural Stem Cells with the Novel Small Molecule Drug TR-107. Thang, M., Mellows, Kass, L.E., Daglish, S., Fennell, E.M.J., Mann, B.E., Mercer-Smith, A., Valdivia, A., Aponte-Collazo, L.J., Graves, L.M., **Hingtgen, S.D.**, *Mol. Ther. Oncolytics (Under Review)*
- 2. Thang, M., Mellows, C., Mercer-Smith, A., Nguyen, W., Hingtgen, S.D., Current Approaches in Enhancing TRAIL Therapies in Glioblastoma. *Neuro-Onc (Under Review)*
- He, S., Lao, YH, Shankar, S., Kunes, R., Berry, R., Jiang, W., Lee, J.H., Hingtgen, S.D., Azizi, E., Leong, K., Topological defects induced by MSC–cancer cell interactions correlate with cancer cell apoptosis, *Biomaterials (Under Review)*
- 4. Trans-lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, **Hingtgen S.D.**, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Nat. Comms *(In Press)*
- Longitudinal 3-D Visualization of Microvascular Disruption and Perfusion Changes in Mice During the Evolution of Glioblastoma Using Super-Resolution Ultrasound. McCall, J.R., DeRuiter, R., Ross, M., Santibanez, F., Hingtgen, S.D., Pinton, G.F., Dayton, P.A., *IEEE Trans Ultrason Ferroelectr Freq Control* 2023 Nov;70(11):1401-1416. Epub 2023 Nov 1.
- 6. Mann B, Zhang X, Bell N, Adefolaju A, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Buckley A, Lettry V, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. A living ex vivo platform for functional, personalized brain cancer diagnosis. *Cell Rep Med.* 2023 Jun 20;4(6):101042. doi: 10.1016/j.xcrm.2023.101042.
- Woodell, A., Landoni, E., Valdivia, A., Buckley, A., Ogunnaike, E., Dotti, G., Hingtgen, S.D., Utilizing Induced Neural Stem Cell-Based Delivery of a Cytokine Cocktail to Enhance CAR-T Cell Therapy for Brain Cancer. *Bioeng Transl Med.* 2023 May 29. doi: 10.1002/btm2.10538

Shawn D. Hingtgen	Page 2 of 30	Prepared: 2022

- Nehama D, Woodell AS, Maingi SM, Hingtgen SD, Dotti G. Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity. *Neuro Oncol.* 2023 May 14:noad092. doi: 10.1093/neuonc/noad092.
- 9. Abdelnabi, D., Watts, C., Hingtgen, S.D., Valdivia, A., McConville, C. ChemoSeed®: A Novel Implantable Device for the Treatment of High Grade Gliomas, *Neuro-Oncology*, Volume 24, Issue Supplement_4, October 2022, Pages iv1–iv2, doi.org/10.1093/neuonc/noac200.003
- King JL, Maturavongsadit P, Hingtgen SD, Benhabbour SR. Injectable pH Thermo-Responsive Hydrogel Scaffold for Tumoricidal Neural Stem Cell Therapy for Glioblastoma Multiforme. *Pharmaceutics*. 2022 Oct 20;14(10):2243. doi: 10.3390/pharmaceutics14102243.
- Mercer-Smith, A.R., Buckley, A., Valdivia, A., Jiang, W., Thang, M., Bell, N., Kumar, R.J., Bomba, H.N., Woodell, A.S., Luo, J., Floyd, S.R., Hingtgen, S.D. Next-generation Tumor-homing Induced Neural Stem Cells as an Adjuvant to Radiotherapy for the Treatment of Metastatic Lung Cancer. *Stem Cell Rev Rep.* 2022 Oct;18(7):2474-2493. doi: 10.1007/s12015-022-10375-3. Epub 2022 Apr 19.
- Satterlee, A.B, Dunn, D.E., Valdivia, A., Malawsky, D., Buckley, A., Gershon, T., Floyd, S., Hingtgen, S.D. Spatiotemporal analysis of induced neural stem cell therapy to overcome advanced glioblastoma recurrence. *Mol Ther Oncolytics*. 2022 Jun 7;26:49-62. doi: 10.1016/j.omto.2022.06.004. eCollection 2022 Sep 15.
- **13.** McLaughlin, J.E., Greene, J., Olsen, A.A., Coste-Sanchez, C., Jay, M., Anselmo, A., and **Hingtgen, S.** Successful use of pre-class videos from a pharmacy course for pre-class learning in a biomedical graduate course. *Educ Health Prof.* 2022;5:72-5
- 14. Bomba, H.N., Cary-Ewend, A., Sheets, K.T., Goetz, M.J., Findlay, I.A, Mercer-Smith, A.R., Khagi, S., Hingtgen, S.D. Use of FLOSEAL® as a Scaffold and its Impact on Induced Neural Stem Cell Phenotype, Persistence, and Efficacy. *Bioeng Transl Med.* 2022 Jan 21;7(2):e10283. doi: 10.1002/btm2.10283. eCollection 2022 May.
- Ogunnaike, E.A., Valdivia, A., Yazdimamaghani, M., Leon, E., Hudson, H., Du, H., Khagi, S., Zhen, G., Savoldo, B., Ligler, F., Hingtgen, S.D., Dotti, G. Fibrin-Based Gel for Loco Regional Delivery of Chimeric Antigen Receptor T Cells in Glioblastoma. *Sci. Adv.* Sci Adv. 2021 Oct 8;7(41):eabg5841. Impact Factor: 13.1
- 16. Mercer-Smith, A.R., Jiang, W., Bago, J.R., Valdivia, A., Woodell, A.S., Montgomery, S.A., Sheets, K.T., Anders, C.K., Hingtgen, S.D. Cytotoxic Engineered Induced Neural Stem Cells as an Intravenous Therapy for Primary Non-Small Cell Lung Cancer and Triple-Negative Breast Cancer. *Mol Cancer Ther.* 2021 Aug 25:molcanther.0109.2021. doi: 10.1158/1535-7163.MCT-21-0109. Online ahead of print. Impact Factor: 6.3
- Mercer-Smith, A.R., Findlay, I.A, Bomba, H.N., Hingtgen, S.D. Intravenously infused stem cells for cancer treatment. *Stem Cell Rev Rep.* 2021 Jun 17. doi: 10.1007/s12015-021-10192-0. Online ahead of print. Impact Factor: 5.3
- Jiang, W., Yang, Y., Mercer-Smith, A.R., Valdivia, A., Bago, J.R., Woodell, A.S., Buckley, A., Marand, M., Qian, L., Anders, C.K., Hingtgen, S.D. Development of next-generation tumor-homing induced neural stem cells to enhance treatment of metastatic cancers. *Sci Adv.* 2021 Jun 9;7(24):eabf1526. doi: 10.1126/sciadv.abf1526. Print 2021 Jun. Impact Factor: 13.1
- 19. Cary-Ewend, A., Hagler, S.B., Bomba, H.N., Goetz, M.J., Bago, J.R., Hingtgen, S.D. Developing Bio-inspired 3D Models of Brain Cancer to Evaluate Tumor-homing Stem Cell Therapy. *Tissue Eng. Part A* 2020 Oct 20.doi: 10.1089/ten.tea.2020.0113.

Impact Factor: 3.5

- 20. Bomba, H.N., Sheets, K.T., Valdivia, A., Khagi, S., Ruterbories, L, Mariani, C.L., Borst, L.B., Tokarz, D.A., Hingtgen, S.D. Personalized Neural Stem Cell Therapy: Generation, Transplant, and Safety in a Large Animal Model. *Bioengineering & Transla Med* 2021 January 6(1): e10171. doi.org/10.1002/btm2.10171
 Impact Factor: N/A
- 21. Gawley, M., Almond, L., Daniel, S., Lastakchi, S., Kaur, S., Detta, A., Cruickshank, G., Miler, C.R., Hingtgen, S.D., Sheets, K., McConville, C. Development and *in vivo* evaluation of Irinotecan-loaded Drug Eluting Seeds (iDES) for the Localized Treatment of Recurrent Glioblastoma Multiforme. *J Control Release*. 2020 May 11;324:1-16. doi: 10.1016/j.jconrel.2020.05.012. Online ahead of print.PMID: 32407745

Impact Factor: 7.9

22. Buckley, A., Hagler, S.B., Lettry, V., Bago, J.R., Maingi, S.M., Khagi, S., Ewend, M.G., Miller, C.R., **Hingtgen, S.D.** Generation and profiling of tumor-homing induced neural stem cells from the skin of cancer patients. *Mol Ther*. 2020;S1525-0016(20)30204-5. doi:10.1016/j.ymthe.2020.04.022

Impact Factor: 8.4

23. Moore K.M., Graham-Gurysh E., Bomba, H., Murthy, A., Bachelder, E.M., Hingtgen S.D., Ainslie, K.M. Impact of composite scaffold degradation rate on neural stem cell persistence in the glioblastoma surgical resection cavity. *Mater Sci Eng C Mater Biol Appl.* 2020 Jun;111:110846. doi: 10.1016/j.msec.2020.110846. Epub 2020 Mar 13.PMID: 32279815

Impact Factor: 5.1

24. Sheets, K.T., Okolie, O., Ewend, M., Mohiti-Asli, M., Turin, S., Loboa, E.G., Aboody, K., Hingtgen, S.D. Developing Implantable Scaffolds to Enhance Neural Stem Cell Therapy for Post-operative Glioblastoma. *Mol Ther*. 2020 Apr 8;28(4):1056-1067. doi: 10.1016/j.ymthe.2020.02.008. Epub 2020 Feb 13.PMID: 32109370

Impact Factor: 8.4

Graham-Gurysh E., Murthy, A.B., Moore, K.M., Satterlee A.B., Sheets, K.T., Lin, F.C., Bachelder, E.M., Hingtgen, S.D., Ainslie, K.M. Synergistic Drug Combinations for a Precision Medicine Approach to Interstitial Glioblastoma Therapy. *J Control Release. 2020* Apr 23;323:282-292. doi: 10.1016/j.jconrel.2020.04.028. Online ahead of print.PMID: 32335153

Impact Factor: 7.9

26. Graham-Gurysh E., Moore, K.M., Schorzman, A.M., Lee, T., Zamboni, W.C., Hingtgen, S.D, Bachelder, E.M., Ainslie, K.M. Tumor Responsive and Tunable Polymeric Platform for Optimized Delivery of Paclitaxel to Treat Glioblastoma. ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19345-19356. doi: 10.1021/acsami.0c04102. Epub 2020 Apr 17.PMID: 32252517

Impact Factor: 5.1

- 27. Satterlee, A.B, Dunn, D.E., Lo, D.C., Khagi, S., Hingtgen, S.D. Tumoricidal Stem Cell Therapy Enables Killing in Novel Hybrid Models of Heterogeneous Glioblastoma. *Neuro. Oncol.*, 2020 Aug. 17. PMID: 31420675 Impact Factor: 10.1
- 28. Suryaprakash S, Lao YH, Cho HY, Li M, Ji HY, Shao D, Hu H, Quek CH, Huang D, Mintz RL, Bagó JR, Hingtgen, S.D., Lee KB, Leong KW. Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. *Nano Lett.* 2019 Mar 13;19(3):1701-1705. doi:

10.1021/acs.nanolett.8b04697. Epub 2019 Feb 21. PMID: 30773888

Impact Factor: **12.3**

29. Sheets, K., Bago., J.R., Paulk, I.L., Hingtgen, S.D., Image Guided Resection of Glioblastoma and Intracranial Implantation of Therapeutic Stem Cell-seeded Scaffolds. JoVE 2018 Jul 16;(137). Doi 10.3791/57452. PMID: 30059037

Impact Factor: 1.3

30. Okolie O, Irvin DM, Bago JR, Sheets K, Satterlee A, Carey-Ewend AG, Lettry V, Dumitru R, Elton S, Ewend MG, Miller CR, Hingtgen, S.D. Intra-cavity stem cell therapy inhibits tumor progression in a novel murine model of medulloblastoma surgical resection. *PLoS One*. 2018 Jul 10;13(7):e0198596. doi: 10.1371/journal.pone.0198596. eCollection 2018. PMID: 29990322

Impact Factor: 2.8

31. Graham-Gurysh E, Moore KM, Satterlee AB, Sheets KT, Lin FC, Bachelder EM, Miller CR, Hingtgen, S.D, Ainslie KM. Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection. *Mol Pharm.* 2018 Mar 5;15(3):1309-1318. doi: 10.1021/acs.molpharmaceut.7b01114. Epub 2018 Feb 2. PMID:29342360

Impact Factor: 4.4

32. Sheets, K.T., Bajo, J.R. **Hingtgen, S.D.** Delivery of Cytotoxic Mesenchymal Stem Cells with Biodegradable Scaffolds for Treatment of Postoperative Brain Cancer. *Methods Mol Biol.* 2018;1831:49-58. doi: 10.1007/978-1-4939-8661-3_5. PMID:30051424

33. Bago, J.R., Okolie, O., Dumitru, R., Ewend, M.G., Hingtgen, S.D. Tumor-homing Cytotoxic Induced Neural Stem Cells for Cancer Therapy. *Sci Transl Med* 2017 Feb 1;9(375). pii: eaah6510. doi: 10.1126/scitranslmed.aah6510. PMID: 28148846

Impact Factor: 16.3

Featured on the cover of the journal, was the cover story for the NIH NCATS website, and featured in numerous other on-line and media outlets including "The Stem Cell Podcast", Genetic Engineering & Biotechnology news, and the international TV show "Carte Blanche".

- 34. Lettry, V., Hagler, S.B., Khagi, S, Hingtgen, S.D., Tumor-homing Stem Cell Therapy for Brain Cancer. Curr. Surg. Rep (2017), .5: 28. <u>https://doi.org/10.1007/s40137-017-0190-5</u> Impact Factor: NA
- **35.** Okolie, O., Bago, J.R., Schmid, R.S., Irvin, D.M., Bash, R.E., Miller, C.R., **Hingtgen, S.D.** Reactive Astrocytes Potentiate Tumor Aggressiveness in a Murine Glioma Resection Recurrence Model. *Neuro Oncol.* June 13, 2016 PMID: 27298311

Impact Factor: **7.4** (leading journal in the field)

36. Bago, J.R., Pegna, G.L., Okolie, O., Mohiti-Asli, M., Loboa, E.G., **Hingtgen, S.D.** (2016). Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy for surgically resected glioblastoma. *Biomaterials*, (2016) Jun;90:116-25. PMID: 2701662

Impact Factor: 8.4

37. Bago, J.R., Alfonso-Pecchio, A., Okolie, O., Dumitru, R., Rinkenbaugh, A., Baldwin, A.S., Miller, C.R., Magness, S.T., Hingtgen, S.D. (2016). Therapeutically engineered induced neural stem cells are tumor-homing and inhibit progression of glioblastoma. *Nat. Commun.*, Feb 2;7:10593. PMID: 26830441

Impact Factor: 11.3

Featured in "The News Observer", WRAL nightly news, WNCN news, "Radio In Vivo" talk show, and in numerous other media outlets.

- 38. Bago, J.R., Pegna, G.L., Okolie, O., Hingtgen, S.D. (2016). Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. *Biomaterials*, (2016) Apr;84:42-53. PMID: 26803410
 Impact Factor: 8.4
- 39. Bago, J.R., Sheets, K.T., Hingtgen, S.D. (2015). Neural Stem Cell Therapy for Cancer. *Methods*. 2015 Aug 24; S1046-2023 doi: 10.1016/j.ymeth.2015.08.013. [Epub ahead of print]

Impact Factor: 3.5

40. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen, S.D., Kabanov AV, Batrakova EV. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. *Nanomedicine*. 2015 Nov 14.

Impact Factor: 4.4

- Stuckey D.W.*, Hingtgen S.D.*, Karakas N., Rich B.E., Shah K. Engineering toxin-resistant therapeutic stem cells to treat brain tumors. *Stem Cells*. 2014 Oct. [Epub]. PMID: 25346520 (PMC Journal in process). *co-first authors. Impact Factor: 5.9
- **42.** Duebgen M., Martinez-Quitanilla J., Tamura K., **Hingtgen S.D.**, Redjal N., Wakimoto H., Shah K. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. *J Natl. Cancer Inst.* 2014 May 16; 106 (6) [Epub ahead of print]. PMID: 24838834 (PMC Journal in process)

Impact Factor: 12.6

43. Klyachko N.L., Haney M.H., Zhao Y., Manickam D.S., Mahajan V., Suresh P., Hingtgen, S.D., Mosley R.L., Gendelman H.E., Kabanov A.V., Batrakova E.V. (2013) Macrophages Offer a Paradigm Switch for CNS Nanozyme Delivery, *Nanomedicine*. 2013 Nov 18. [Epub ahead of print]

Impact Factor: 4.4

44. Haney M.J., Zhao Y., Harrison E.B., Mahajan V., Ahmed S., He Z., Suresh P., Hingtgen S.D., Klyachko N.L., Mosley R.L., Gendelman H.E., Kabanov A.V., Batrakova E.V. (2013) Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases. *PLoS One* 2013 Apr 19;8(4): e61852. PMID: 23620794 Impact Factor: 3.2

Shawn D. Hingtgen

- 45. Hingtgen, S.D. Glioblastoma Therapy. Encyclopedia of Cancer. In: Schwab M. (Ed.) Encyclopedia of Cancer: SpringerReference (www.springerreference.com). Springer-Verlag Berlin Heidelberg. DOI: 10.1007/SpringerReference_332223 2012-11-11 12:16:21 UTC Impact Factor: NA
- 46. Hingtgen, S.D., Figueiredo, J.F., Ferrar, C., Shah, K. A multi-modality image-guided mouse model of Glioblastoma resection and recurrence. *J. Neuroonc.* 2012 Dec 16. [Epub ahead of print] Impact Factor: 3.1
- 47. Hingtgen, S.D., Sarkar, D., Yacoub, A., Fisher, P.B., Shah, K. A first-generation multi-functional cytokine for simultaneous optical tracking and tumor therapy. *PLoS One* 2012;7(7):e40234 Impact Factor: 3.2
- 48. Kauer, T.M., Figueiredo, J.F., Hingtgen, S.D., Shah, K. Novel approach to deliver stem-cell based therapy in a mouse model of glioma resection. *Nat Neurosci.* 2011 Dec 25;15(2):197-204.
 Impact Factor: 16.7
- **49. Hingtgen, S.D.,** Kasmieh, R., van de Water J.A., Figueiredo, J.L., Weissleder, R., Shah, K. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy. *Stem Cells.* 2010 Apr;28(4):832-41.

Impact Factor: 5.9

50. Hingtgen, S.D., Li, Z., Kutschke, W., Tian, X., Sharma, R.V., Davisson, R.L. Superoxide Scavenging and AKT Inhibition in the Myocardium Ameliorate Pressure Overload-induced NFκB Activation and Cardiac Hypertrophy. *Physiol Genomics.* 2010 Apr;41:127-136.

Impact Factor: 2.7

51. Sasportas, L.S., Kasmieh, R., Wakimoto, H., **Hingtgen, S.D.**, van de Water J.A., Mohapatra, G., Figueiredo, J.L., Martuza, R.L., Weissleder, R., Shah, K. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. *Proc Natl Acad Sci U S A*. 2009 Mar 24;106(12):4822-7.

Impact Factor: 9.4

52. Hingtgen, S.D., Ren, X., Terwilliger, E.F., Classon, M., Weissleder, R., Shah, K. Targeting Multiple Pathways in Gliomas with Stem Cell and Viral Delivered S-TRAIL and Temozolomide. *Mol Cancer Ther.* 2008 Nov;7(11):3575-85

Impact Factor: **5.6**

53. Shah, K., Hingtgen, S.D., Kasmieh, R., Figueiredo, J.L., Martinez-Serrano, A., Breakefield, X.O., Weissleder, R. Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. *J Neurosci* 2008 April 28(17):4406-4413

Impact Factor: 6.3

- 54. Arwert, E., Hingtgen, S.D., Figueiredo, J.L., Bergquist, H., Mahmood, U., Weissleder, R., Shah, K. Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. *Cancer Res.* 2007 Aug 1;67(15):7335-42 Impact Factor: 9.3
- 55. Hingtgen, S.D., Tian, X., Sharma, R.V., Davisson, R.L. A gp91^{phox}-Containing NADPH Oxidase is a Key Signaling Molecule in Angiotensin II-Induced Cardiomyocyte. *Physiol Genomics* 2006 Aug; 26 (3):180-91 Impact Factor: 2.7
- 56. Xiuying Ma, Curt D. Sigmund, Shawn D. Hingtgen, Xin Tian, Robin L. Davisson, Francois M. Abboud, and Mark W. Chapleau. Ganglionic Action of Angiotensin Contributes to Sympathetic Activity in Renin-angiotensinogen Transgenic Mice. *Hypertension*. 2004 Feb;43(2):312-6

Impact Factor: 6.3

57. Hingtgen, S.D., Davisson, R.L. Gene therapeutic approaches to oxidative stress-induced cardiac disease: principles, progress and prospects. *Antioxid. Redox Signal.* 2001 Jun; 3(3):433-49
 Impact Factor: 7.4

REFEREED ABSTRACTS

- 1. Valdivia, A., Satterlee, A.S., Bae-Jump, V., Hingtgen, S.D., A novel ex vivo platform for personalized treatment in metastatic ovarian cancer. *Society for Gynecologic-oncology Annual Meeting. March 16-18, 2024, San Diego, CA*
- Mann B, Zhang X, Bell N, Adefolaju A, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. Development of a novel, personalized drug sensitivity score to assess tumor killing and toxicity within an organotypic brain slice culture platform. *Society for Neuro-Oncology Annual Meeting, November 15-19, 2023.* Vancouver CA
- **3.** Adefolaju A, Mann B, Zhang X, Bell N, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, **Hingtgen S**, Satterlee AB. Living ex vivo organotypic brain slice cultures as a comprehensive substrate for tumor engraftment and analysis. *Society for Neuro-Oncology Annual Meeting, November 15-19, 2023. Vancouver CA*
- 4. Zhang X, Mann B, Bell N, Adefolaju A, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. An ex vivo platform based on organotypic brain slice culture informing personalized brain cancer therapy. *Society for Neuro-Oncology Annual Meeting, November 15-19, 2023. Vancouver CA*
- 5. Dasari R, Mann B, Zhang X, Bell N, Adefolaju A, Thang M, Kanchi K, Valdivia A, Yang Y, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. Generation and characterization of living organotypic brain slice cultures as a novel pre-clinical model for brain cancer. *Society for Neuro-Oncology Annual Meeting, November 15-19, 2023. Vancouver CA*
- 6. Kass, L., DeVane, C., Tessema, A., Logan, L., Perry, J., Hingtgen, S.D., Development of 3D biocompatible hydrogels using Continuous Liquid Interface Production (CLIP) for the sustained delivery of therapeutic neural stem cells against Glioblastoma. *European Society of Biomaterials. September 4-8, 2023. Davos, Switzerland*
- 7. Mann B, Zhang X, Bell N, Adefolaju A, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. A living ex vivo platform for functional, personalized pediatric brain cancer diagnosis. *Pediatric Neuro-Oncology Research Conference, June 22-24, 2023. Washington DC*
- 8. Thang, M., Mellows, Kass, L.E., Daglish, S., Valdivia, A., Graves, L.M., Hingtgen, S.D., Combining TRAIL-secreting Induced Neural Stem Cells with a Novel Sensitizing Drug TR-107. *American Society of Gene and Cell Therapy Annual Meeting. May 16-20, 2023.Los Angeles, CA*
- 9. Kass, L., DeVane, C., Tessema, A., Logan, L., Perry, J., Hingtgen, S.D., Printed Hydrogel Scaffolds Generated Using Continuous Liquid Interface Production for the Delivery of Neural Stem Cells to Treat Glioblastoma. *American Society of Gene and Cell Therapy Annual Meeting. May 16-20, 2023.Los Angeles, CA*
- Bomba, H., Kass, L., Carey-Ewend, A., Sheets, K., Valdivia, A., Goetz, M., Findlay, I., Mercer-Smith, A., Khagi, S., Hingtgen, S.D., Biomaterial Scaffolds for the Delivery of Neural Stem Cell Therapies into the Glioblastoma Resection Cavity. *Society for Neuro-oncology. November 16-20, 2022. Tampa, FL.*
- 11. Zhang, X., Dunn, D., Valdivia, A., Buckley, A., Floyd, S., **Hingtgen, S.D.**, Satterlee, A., Modeling the intratumoral heterogeneity of aggressive glioblastoma on organotypic brain slices to optimize tumor-homing tumoricidal iNSC treatment. *Society for Neuro-oncology. November 16-20, 2022. Tampa, FL.*
- Mann, B., Zhang, Z., Bell, N., Adefolaju, A., Dasari, R., Hingtgen, S.D., Satterlee, A.B., Organotypic Brain Slice Culture Platform as a Novel Pre-Clinical Model for Patient Derived Cell Lines. *Society for Neuro-oncology*. *November 16-20, 2022. Tampa, FL.*
- 13. Thang, M., Valdivia, A., Hingtgen, S.D., Combining Induced Neural Stem Cell Therapy and Immunomodulation in Glioblastoma. *Society for Neuro-oncology. November 16-20, 2022. Tampa, FL.*
- 14. Mann, B., Bell, N., Dunn, D.E., Floyd, S., Hingtgen, S.D., Satterlee, A.B., An Organotypic Brain Slice Culture Platform as a Novel Pre-Clinical Model for Diffuse Intrinsic Pontine Glioma and Diffuse Midline Glioma. *International Society for Pediatric Neuro-Oncology, June 11-12, 2022, Hamburg, Germany.*
- **15.** Morrent, T, Jiang, W., Valdivia, A., Mercer-Smith, A.R., Anders, C.K., **Hingtgen, S.D.** Tumor-homing Induced Neural Stem Cell Therapy Inhibits the Progression of Breast Cancer Brain Metastasis and Leptomeningeal Carcinomatosis. *Society for Neuro-oncology. November 18-20, 2021.*
- Mann, B., Bell, N., Dunn, D.E., Floyd, S., Hingtgen, S.D., Satterlee, A.B., An organotypic tissue platform to bridge in vitro and in vivo assays for brain cancer treatment. *Society for Neuro-oncology Meeting. November 18-20, 2021. Shawn D. Hingtgen* Page 7 of 30
 Prepared: 2022

- 17. Jiang, W., Valdivia, A., Mercer-Smith, A.R., Anders, C.K., **Hingtgen, S.D.** Tumor-homing Induced Neural Stem Cell Therapy Inhibits the Progression of Breast Cancer Brain Metastasis and Leptomeningeal Carcinomatosis. *Society for Neuro-oncology Meeting. November 19-21, 2020. Held Virtually*
- **18.** Mercer-Smith, A.R., Jiang, W., Valdivia, A., Bago, J.R., Floyd, S., Khagi, S., **Hingtgen, S.D.** Tumor-homing induced neural stem cells secreting a cytotoxic payload as an adjuvant treatment for non-small cell lung cancer brain metastases. *Society for Neuro-oncology Brain Metastasis Meeting. November 19-21, 2020. Held Virtually*
- 19. Jiang, W., Valdivia, A., Mercer-Smith, A.R., Anders, C.K., Hingtgen, S.D. Tumor-homing Induced Neural Stem Cell Therapy Inhibits the Progression of Breast Cancer Brain Metastasis and Leptomeningeal Carcinomatosis. *Society for Neuro-oncology Brain Metastasis Meeting. August 14, 2020. Held Virtually*
- **20.** Mercer-Smith, A.R., Jiang, W., Valdivia, A., Bago, J.R., Floyd, S., Khagi, S., **Hingtgen, S.D.** Tumor-homing induced neural stem cells secreting a cytotoxic payload as an adjuvant treatment for non-small cell lung cancer brain metastases. *Society for Neuro-oncology Brain Metastasis Meeting. August 14, 2020. Held Virtually*
- **21.** Satterlee, A., Dunn, D., Floyd, S., **Hingtgen, S.D.** Understand and Overcoming Glioblastoma Resistance with Novel In Vivo and Ex Vivo Models. American Society of Cell & Gene Therapy. *American Society of Gene and Cell Therapy Annual Meeting. May 12-15, 2020. Held Virtually*
- 22. Bomba, H.N., Sheets, K.T., Valdivia, A., Khagi, S., Ruterbories, L, Mariani, C.L., Borst, L.B., Tokarz, D.A., Hingtgen, S.D. Personalized Neural Stem Cell Therapy: Generation, Transplant, and Safety in a Large Animal Model. *American Society of Gene and Cell Therapy Annual Meeting. May 12-15, 2020. Held Virtually*
- 23. Jiang, W., Mercer-Smith, A, Anders, C.A., Hingtgen, S.D., Personalized tumor-homing cell-based treatments for metastatic cancer American Society of Gene and Cell Therapy Annual Meeting. May 12-15, 2020. Held Virtually
- 24. Gopakumar, S., Gumin, J., Daou, M., Ledbetter, D., McDonald, M.F., Hossain, A., Hingtgen, S.D., Ewend, M.G., Lang, F.F. Stem cell delivery of oncolytic adenovirus DNX-2401 following surgical resection for the treatment of glioblastoma. Society for Neuro-oncology Annual Meeting. November 19-23, 2019. Phoenix, AZ
- 25. Satterlee, A., Dunn, D., Floyd, S., Hingtgen, S.D. Adapting Engineered Cell Therapies to Understand and Overcome Glioblastoma Resistance Using Integrated In Vivo and Ex Vivo Models. *Society for Neuro-oncology Annual Meeting*. *November 19-23, 2019. Phoenix, AZ*
- 26. Bomba, H, Sheets, K.T., Carey-Ewend, A., Goetz, M., Bago, J.R., Khagi, S., Hingtgen, S.D. Increasing Induced Neural Stem Cell Persistence in the Tumor Resection Cavity. Society for Neuro-oncology Annual Meeting. November 19-23, 2019. Phoenix, AZ
- 27. Jiang, W., Mercer-Smith, A, Anders, C.A., Hingtgen, S.D. Creating personalized tumor-homing cell-based treatments for metastatic brain cancer. *Society for Neuro-oncology Brain Metastasis Meeting. September 15-17, 2019. New York, NY*
- 28. Jiang, W., Mercer-Smith, A, Anders, C.A., Hingtgen, S.D. Development of tumor-homing cell therapy for breast cancer. *American Society of Gene and Cell Therapy Annual Meeting. April 29-May 2, 2019. Washington D.C.*
- **29.** Hagler, S., Bago, J.R., Ewend, M.E., **Hingtgen, S.D.** Developing patient-derived induced neural stem cells therapy for glioblastoma. *American Society of Gene and Cell Therapy Annual Meeting. April 29-May 2, 2019. Washington D.C.*
- **30.** Satterlee, A., Dunn, D.E., Lo, D.C., Khagi, S., **Hingtgen, S.D.** Tumoricidal Stem Cell Therapy Enables Killing in Novel Hybrid Models of Heterogeneous Glioblastoma. *American Society of Gene and Cell Therapy Annual Meeting. April 29-May 2, 2019. Washington D.C.*
- 31. Sheets, K.T., Okolie, O., Ewend, M., Mohiti-Asli, M., Turin, S., Loboa, E.G., Aboody, K., Hingtgen, S.D. Creating Implantable Scaffolds to Enhance Neural Stem Cell Therapy for Post-surgical Glioblastoma. Society for Neuro-Oncology Annual Meeting. November 14-17, 2018. New Orleans, LA
- 32. Satterlee, A., Dunn, D.E., Lo, D.C., Khagi, S., Hingtgen, S.D. Developing Tumoricidal Stem Cell Therapy To Induce Killing in Novel Hybrid Models of Heterogeneous Glioblastoma. Society for Neuro-Oncology Annual Meeting. November 14-17, 2018. New Orleans, LA
- **33.** Sheets, K.T., Okolie, O., Ewend, M., Mohiti-Asli, M., Turin, S., Loboa, E.G., Aboody, K., **Hingtgen, S.D.** Implantable Scaffolds Enhance Neural Stem Cell Therapy for Post-surgical Glioblastoma. *American Society of Gene and Cell Therapy Annual Meeting. May 16-19, 2018. Chicago, Il*
- **34.** Hagler, S., Bago, J.R., Ewend, M.E., **Hingtgen, S.D.** Characterizing patient-derived induced neural stem cells as drug delivery platform for glioblastoma. *American Society of Gene and Cell Therapy Annual Meeting. May 16-19, 2018. Chicago, Il*

- **35.** Okolie, O., Irvin, D.M., Bago, J.R., Sheets, K., Satterlee, A., Dumitru, R., Elton, S., Ewend, M.G., Miller, C.R., **Hingtgen, S.D.** Investing Intra-Cavity Stem Cell Therapy For Post-operative Medulloblastoma. *American Society of Gene and Cell Therapy Annual Meeting. May 10-13, 2017. Washington D.C.*
- **36.** Sheets, K.T., Okolie, O., Khagi, S., Ewend, M.G., Mohiti-Asli, M., Tuin, S., Loboa, E.G., Aboody, K., **Hingtgen, S.D.** Engineering Polymeric Scaffolds to Improve the Transplant and Efficacy of Neural Stem Cell Therapy for Postoperative Glioblastoma. *American Society for Gene and Cell Therapy Annual Meeting. May 10-13, 2017. Washington D.C.*
- **37.** Okolie, O., Bago, J.R., Miller, C.R., **Hingtgen, S.D.** Astrocytes Enhance Glioma Aggressiveness in a Mouse Models of Resection and Recurrence. *Society for Neuro-Oncology Annual Meeting. November 17-20, 2016. Scottsdale, AZ*
- **38.** Sheets, K.T., Okolie, O., Khagi, S., Ewend, M.G., Mohiti-Asli, M., Tuin, S., Loboa, E.G., Aboody, K., **Hingtgen, S.D.** Polymeric Scaffolds to Enhance Neural Stem Cell Therapy for Post-operative Glioblastoma. *Society for Neuro-Oncology Annual Meeting. November 17-20, 2016. Scottsdale, AZ*
- **39.** Bago, J.R., Okolie, O., Dumitru, R., Ewend, M.G., **Hingtgen, S.D.** Tumor-homing Human Induced Neural Stem Cells: Towards Personalized Cell Therapy for Glioblastoma. *Gordon Research Conference on Drug Carriers in Medicine & Biology. August 7-12, 2016 Waterville Valley, NH,*
- **40.** Bago, J.R., Pegna, G.J., Okolie, O., Mohiti-Asli, M., Loboa, E.G., **Hingtgen, S.D.** Developing polymeric bio-scaffolds that increase the efficacy of stem cell-mediated therapy for brain tumors. *American Society of Cell and Gene Therapy Annual Meeting. April 4-7, 2016. Washington D.C.*
- **41.** Bago, J.R., Okolie, O., Mohiti-Asli, M., Loboa, E.G., **Hingtgen, S.D.** Developing novel bio-scaffolds that enahnce the efficacy of stem cell-mediated therapy for brain tumors. *Society for Neuro-Oncology Annual Meeting. November 17-20, 2015. San Antonio, TX*
- **42.** Bago, J.R., Sheet, K.R., Okolie, O., Mohiti-Asli, M., Loboa, E.G., **Hingtgen, S.D.** Biocompatible scaffolds improve the transplant and efficacy of stem cell-mediated therapy for post-surgical brain tumors. *UNC Small Animal Imaging Symposium. October, 22, 2015, UNC Chapel Hill, Chapel Hill, NC- Awarded best poster.*
- **43.** Bago, J.R., Okolie, O., Dumitru, R., Ewend, M.G., **Hingtgen, S.D.** Tumor-homing Human Induced Neural Stem Cells: Towards Personalized Cell Therapy for Glioblastoma *North Carolina Tissue Engineering and Regenerative Medicine Society. October 16, 2015. Wake Forest University, Winston Salem, N.C.*
- 44. Bago, J.R., Sheet, K.R., Okolie, O., Mohiti-Asli, M., Loboa, E.G., **Hingtgen, S.D.** Polymeric bio-scaffolds increase the efficacy of stem cell-mediated therapy for brain tumors. *North Carolina Tissue Engineering and Regenerative Medicine Society. October 16, 2015. Wake Forest University, Winston Salem, N.C.*
- **45.** Bago, J.R., Okolie, O., Dumitru, R., Ewend, M.G., **Hingtgen, S.D.** *Engineered induced neural stem cells for cancer therapy*. Association for Clinical and Translational Science Meeting, April 16-18, 2015. Washington D.C.
- **46.** Alfonso-Pecchio, A., Bago, J.R., Okolie, O., Dumitru, R., **Hingtgen, S.D.** Engineered Induced Neural Stem Cells are Tumor-homing Drug Carriers the Regress Glioblastoma. *Society for Neuro-Oncology Annual Meeting. November 13-17, 2014. Miami, FL-Young Investigator Award presentation.*
- 47. Alfonso-Pecchio, A., Bago, J.R., Okolie, O., Dumitru, R., Hingtgen, S.D. Therapeutically engineered induced neural stem cells for glioblastoma therapy. *North Carolina Tissue Engineering and Regenerative Medicine Society. October* 13, 2014. Duke University, Durham, N.C.
- **48. Hingtgen, S.D.,** Kasmieh, R, Nesterenko, I, Figueiredo, J.F., Dash, R., Sarkar, D., Fisher, P.B., Shah, K. Exploring Multiple Aspects of Stem Cell-based Therapy for Cancer Using Novel Multi-functional Molecules. *Society for Neuro-Oncology Annual Meeting. November 14-18, 2013. Washington D.C.*
- **49. Hingtgen, S.D.** Developing Stem Cell-based Therapies for Cancer Treatment. Inagural UNC/NC State Joint Symposium on Stem Cells and Regenerative Medicine. *October 15, 2013, Raleigh, NC.*
- **50. Hingtgen, S.D.** Using Novel Multi-functional Molecules to Develop Stem Cell-based Therapies for Cancer Using. National Institue of Health Stem Cell Symposium. *March 28, 2013, Research Triangle Park, NC.*
- **51. Hingtgen, S.D.,** Figueiredo, J.F., Ferrar, C., Duebgen, M., Martinez-Quitanilla, J., Bhere, D., Shah, K. Developing a glioblastoma surgical resection using multi-modality imaging. UNC Radiology Research Day. January 18, 2013, Chapel Hill, NC.
- **52. Hingtgen, S.D.,** Figueiredo, J.F., Ferrar, C., Duebgen, M., Martinez-Quitanilla, J., Bhere, D., Shah, K. Real-time assessment of glioblastoma surgical resection and recurrence using multi-modality imaging. *Society for Neuro-Oncology Annual Meeting. November 14-18, 2012. Washington D.C.*

- **53. Hingtgen, S.D.,** Kasmieh, R., van de Water J.A., Figueiredo, J.L., Shah, K. Determining Multiple Aspects of Stem Cell-based Therapies using Novel Diagnostic and Therapeutic Multifunctional Molecules. *Keystone Symposia on Stem Cell Differentiation & Dedifferentiation, February 15-20, 2010, Keystone, CO.*
- **54. Hingtgen, S.D.,** Kasmieh, R., Figueiredo, J., Weissleder, R., and Shah, K. Fate and therapeutic efficacy of neural Stem Cells in mouse model of glioma. (2008) *Society for Neuro-Oncology*.
- **55. Hingtgen, S.D.,** Kasmieh, R., Terwilliger, E.F., Weissleder, R., and Shah, K. Adeno-associated viral vector encoding secretable TRAIL inhibits glioma progression assessed by bioluminescent imaging. *Society for Molecular Imaging Annual Meeting, September 8-11, 2007. Providence, RI.*
- 56. Hingtgen, S.D., Kasmieh, R., Figueiredo, J., Chung, S., Kim, K., Weissleder, R., and Shah, K. *In vivo* imaging of embryonic stem cell-derived neural precursor cells and gliomas transduced with bi-modal lentiviral vectors. *Society for Molecular Imaging Annual Meeting, September 8-11, 2007. Providence, RI.*
- **57.** Arwert, E., **Hingtgen, S.D.**, Figueiredo, J., van de Water, J., Bergquist, J., Mahmood, U., Weissleder, R., and Shah, K. Visualizing the dynamics of EGFR activity and anti-glioma therapies *in vivo. Society for Molecular Imaging Annual Meeting, September 8-11, 2007. Providence, RI.*
- **58. Hingtgen, S.D.,** Kasmieh, R., Weissleder, R., Shah, K. (2006). Using bi-modal viral vectors for imaging delivery of S-TRAIL and fate of gliomas in vivo. *Society for Molecular Imaging Annual Meeting, August 31-September 2, 2006. Kona, HI.*
- **59.** Shah, K, **Hingtgen, S.D.**, Kasmieh, R., Figueiredo, J.L., Weissleder, R. (2006). In Vivo Imaging of Human NSC Fate in Mouse Glioma Models. *Society for Molecular Imaging Annual Meeting, August 31-September 2, 2006. Kona, HI.*
- 60. Sharma, R.V., Hingtgen, S.D., Yang, J, Li, Z, Tian, X, Kutschke, W, Engelhardt, J.F., Davisson, R.L. (2005). Activation of Akt by Superoxide (O₂⁻) is Required for NFκB Activation and Cardiac Hypertrophy. *FASEB J*. 19:A136.
- **61. Hingtgen, S.D.,** Tian, X, Li, Z, Kutschke, W, Sharma, R.V., Davisson, R.L. (2005). gp91^{phox} is the Predominant Nox Homologue Expressed in Cardiomyocytes and siRNA-Mediated Silencing of its Expression Abolishes Ang II-Induced Superoxide Generation and Cardiomyocyte Hypertrophy. *FASEB J.* 19:A388
- **62. Hingtgen**, S.D., Kutschke, W., , Li, Z., Sharma. R.V., Davisson, R.L. (2004). Bioluminescent Imaging of Pressure Overload-Induced Myocardial NFκB Activation In Vivo: Role of Superoxide (O₂•-). *Hypertension*. 44:538
- **63. Hingtgen, S.D.,** Tian, X., Sharma, R.V., Davisson, R.L. (2004). The Role of gp91phox in Angiotensin II (AngII)induced Cardiomyocyte Hypertrophy. *FASEB J.* 18:A279
- **64. Hingtgen, S.D.,** Yang, J., Sharma, R.V., Engelhardt, J.E., Davisson, R.L. (2003). Angiotensin (AngII)-Induced Cardiomyocyte Hypertrophy: Role of Reactive Oxygen Species, NFκB, and Akt/Protein Kinase B. *Free Radical Biol. Med.* 35:S66
- **65.** Ma, X., Sigmund, C.D., **Hingtgen, S.D.,** Tian, X., Davisson, R.L., Abboud, F.M., Chapleau, M. W. (2003). Significant Contribution of a Ganglionic Action of Endogenous Angiotensin to Sympathetic Nerve Activity in Reninangiotensin Double Transgenic Mice. *Hypertension*. 42:408
- **66. Hingtgen, S.D.,** Yang, J., Sharma, R.V., Engelhardt, J.E., Davisson, R.L. (2003). Angiotensin II (AngII)-Induced Cardiomyocyte Hypertrophy: Role of Reactive Oxygen Species and Akt/Protein Kinase B. *FASEB J.* 17:A883
- **67. Hingtgen, S.D.,** Yang, J., Wise, M.E., Engelhardt, J.E., Davisson, R.L. (2001). Angiotensin II-Induced Cardiomyocyte Hypertrophy: Role of Rac1-Activated NAD(P)H Oxidase and Reactive Oxygen Species. *Hypertension.* 38:510-511
- **68. Hingtgen, S.D.,** Yang, J., Wise, M.E., Hill, J.A., Engelhardt, J.E., Davisson, R.L. (2000). Role of reactive oxygen species in angiotensin II-induced cardiomyocyte hypertrophy. College of Medicine Research Week, The University of Iowa Carver College of Medicine.
- **69.** Yang, J., **Hingtgen, S.D.,** Hill, J.A., Wise, M.E., Engelhardt, J.F., Davisson, R.L. (2000). Reactive oxygen species mediate angiotensin II-induced cardiomyocyte hypertrophy. *Circulation*. 102:S642.
- **70.** Yang, J., Hjelmstad M., **Hingtgen, S.D.**, Ritchie, T.L., Hill, J.A., Davisson, R.L., Engelhardt, J.F. (2000). Redox Modulating Gene Therapy for Myocardial Ischemia/Reperfusion Injury. *Mol. Ther.* 1:S257.

INVITED ORAL PRESENTATIONS (Only invitations associated with UNC research are listed)

1. Developing New Approaches for Cancer Care: Cell Therapies to Living Tissue Platforms. USC School of Medicine, The University of South Carolina, December 3-4, 2023. Columbia, SC.

- 2. Better Treatments for Cancer: Cell Therapies to Living Tissue Platforms. *The University of Iowa, October 18, 2023. Iowa City, IA*.
- **3.** Advancing Personalized Treatments for Brain Cancer Through Living Tissue Platforms, *ARPA-H Team Visit, May 31, 2023, The University of North Carolina at Chapel Hill, Chapel Hill, NC*
- 4. Developing Better Treatments for Brain Cancer, October 19, 2022, J. Craig Venter Institute, La Jolla, CA
- 5. Engineering Better Treatments for Brain Cancer: Cell Therapies to Living Tissue Platforms, *Bioinnovations in Brain Cancer, September 30-October 1, 2022, The University of Michigan, Ann Arbor, MI*
- 6. Living Tissue Platforms to Advance Pediatric Brain Cancer Care, *Ian's Friends Foundation, September 9-10, 2022. Atlanta, GA*
- 7. New Approaches to Treatments for Ovarian Cancer, SheROCKS Event, October 14, 2021. Attended Virtually
- 8. Developing Novel Cellular Medicines for Ovarian Cancer, *SheROCKS Triad Event, September 24, 2021. Attended Virtually*
- 9. Cell Therapies for Ovarian Cancer, SheROCKS Event, November 5, 2020. Held Virtually
- **10.** Creating a novel tissue platform for personalized cancer therapy. *The University of Florida, January 22-23, 2020, Gainesville, FA*
- 11. Developing Personalized Tumor-homing Cell Therapies for Cancer, J. Craig Venter Institute, October 8, 2019. La Jolla, CA
- 12. Developing Therapies for Ovarian Cancer, SheROCKS Event, November 4, 2019. Wilmington, N.C.
- 13. A Novel Tissue Platform to Rapidly Elucidate Therapeutic Vulnerabilities of Pediatric Brain Cancer, *Ian's Friends Foundation, September 13-14, 2019. Atlanta, GA*
- 14. Tumor-homing Cell Therapy for Cancer, SheROCKS Event, November 1, 2018. Wilmington, N.C.
- **15.** Accelerate Brain Cancer Cure, Emerging Leaders Workshop, *The Case Foundation, October 9-11, 2018. Washington D.C.*
- **16.** Developing Personalized Stem Cell Therapies for Cancer, *National Center for Advancing Translational Sciences, April* 11, 2018. Washington D.C.
- 17. Testing Tumor-homing Stem Cell Therapies in Unique Models of Cancer, *3D Tissue Models of Cancer, April 8-9, 2018.* Boston, MA.
- **18.** For All Kind. The University of North Carolina at Chapel Hill Campaign Launch, *The University of North Carolina at Chapel Hill, October 6, 2017. Chapel Hill, NC.*
- **19.** Towards Personalized Stem Cell Therapies for Cancer, *The New York Stem Cell Foundation, October 23, 2017. New York, NY.*
- **20.** Stem Cell Therapies and Novel Technology. The High Content Analysis and 3D Screening Summit, *November 6 2017*. *Boston MA*.
- **21.** Investigating Intra-Cavity Stem Cell Therapy For Post-operative Medulloblastoma. *American Society of Gene and Cell Therapy Annual Meeting. May 10-13, 2017. Washington D.C.*
- 22. Light-activated Cell Therapies for Cancer: Replacing the Scalpel with a Laser. *Eshelman Institute for Innovation Symposium, The University of North Carolina at Chapel Hill, April 26, 2017. Chapel Hill, NC.*
- 23. Advancing Stem Cell Therapies for Cancer Towards the Clinic. *The Chancellors Philanthropic Council, The University* of North Carolina at Chapel Hill, April 21, 2017. Chapel Hill, NC.
- 24. Developing Cell-based Therapies for Cancer. The University of Nebraska, March 31, 2017. Omaha, NE.
- **25.** Molecular Imaging to Develop Stem Cell Therapies for Cancer. *Triangle Imaging Symposium. The University of North Carolina at Chapel Hill, March 15, 2017. Chapel Hill, NC.*
- 26. Creating Stem Cell Therapies to Treat Cancer. School of Pharmacy. *The University of Birmingham, March 1, 2017. Birmingham, United Kingdom.*
- 27. Developing Personalized Tumor-homing Stem Cell Therapies for Cancer: The Perspective of a K Scholar. *The University of Buffalo Translational Science Institute, February 14-15, 2017. Buffalo, NY.*
- 28. Tumor-homing Stem Cell Therapy for Cancer. Chapel Hill Rotary Society, February 10, 2017, Chapel Hill, NC.

- **29.** Accelerating the Achievement of Translational Milestones within the KL2 Scholar Program at NC TraCS. *National Institute of Health Clinical and Translational Science Awards Consortium Fall Meeting, October 25, 2016. Chicago, IL.*
- **30.** Stem Cell Therapy: A New Approach to Cancer Therapy. UNC Living Legends, UNC Friday Center, October 28, 2016. Chapel Hill, NC.
- **31.** Tumor-homing Stem Cell Therapy for Metastatic Breast Cancer. UNC Division of Hematology-Oncology Annual Retreat. Carolina Club, October 14, 2016. Chapel Hill, NC.
- 32. Stem Cell Therapy for Cancer. Coulter Lecture Series, North Carolina State University, August 26. 2016. Raleigh, NC.
- **33.** Personalized Stem Cell Therapy for Cancer. OneCarolina Symposium, UNC Development Team, UNC Friday Center, June 13, 2016. Chapel Hill, NC.
- **34.** Advancing Stem Cell Therapy for Cancer Towards the Clinics. UNC Friends Fighting Cancer, May 22, 2016. Raleigh, N.C.
- **35.** Human Induced Neural Stem Cell Therapy for Cancer: Towards Personalized Cell Therapy. *American Society of Cell and Gene Therapy Annual Meeting. April 4-7, 2016. Washington D.C.*
- 36. Cell Therapies for Cancer. Carolina Nanoformulations Workshop. March 15, 2016. Chapel Hill, NC. (2015)
- 37. Creating tumor-homing Human Induced Neural Stem Cells for Personalized Cancer Therapy. Society for Neuro-Oncology Annual Meeting. November 17-20, 2015. San Antonio, TX.
- **38.** Treating Cancer with Engineered Stem Cells. UNC Neuroscience Center Seminar Series, November 4, 2015, Chapel Hill, NC.
- **39.** Developing Stem Cell-mediated Therapies for Cancer. University of North Carolina Board of Trustees, October 1, 2015. Chapel Hill, NC.
- **40.** A New Approach to Cancer Therapy: Engineered Stem Cells. University of North Carolina Development Team, May 18, 2015. Chapel Hill, NC.
- **41.** Tumor-homing Stem Cell Therapies: A New Approach to Treating Cancer. UNC Eshelman School of Pharmacy, 50Plus Reunion, May 9, 2015. Chapel Hill, NC.
- **42.** Tumor-homing Stem Cell Treatment for Brain Cancer. UNC Department of Neurosurgery Grand Rounds. May 8, 2015. Chapel Hill, NC.
- **43.** Stem cell-mediated Therapy for Cancer. *Lineberger Comprehensive Cancer Center Joint Retreat, December 1, 2014. Chapel Hill, NC.*
- 44. Engineered Induced Neural Stem Cells are Tumor-homing Drug Carriers that Prevent Glioblastoma Progression. *The Society for Neuro-Oncology Annual Meeting. November 14, 2014. Miami, FL.*
- **45.** Stem Cell-based Therapies for Cancer: An Innovative Treatment. *The Institute for Clinical and Translational Science, The University of Iowa, August 8, 2014. Iowa City, IA.*
- **46.** Induced Neural Stem Cell-Based Therapies: An Innovative Approach to Glioblastoma Therapy. *The Damon Runyon Foundation. November 14, 2013. New York, NY.*
- **47.** Developing Stem Cell Therapy for Cancer. *Association for Clinical and Translational Science Annual Meeting. April* 9-11, 2014. Washington D.C.
- **48.** Stem Cell-based Delivery of Targeted Therapeutics For Cancer Therapy. *Wake Forest Institute for Regenerative Medicine. November 10, 2013. Winston-Salem, NC.*
- **49.** Developing Stem Cell-based Therapies for Cancer. *The University of North Carolina Lineberger Comprehensive Cancer Center's Annual Research Day. April 22, 2013, Chapel Hill, NC.*

PRODUCTS OF ENGAGED SCHOLARSHIP

PRESS/MEDIA FEATURESNovember 1, 2019WTVD ABC11: UNC, Duke Join

November 1, 2019	WTVD ABC11: UNC, Duke Join Forces to Help Fight Childhood Brain Cancer
October 13, 2017	Carte Blanche TV: Brain Cancer Hunters
May 1, 2017	NIH NCATS Translational Science Highlights: CTSA Program Mentoring Paves Way
	for Brain Cancer Therapy
April 2, 2017	UNC TV, Science: Glioblastoma Tumor Removal Can Actually Increase Growth
March 28, 2017	The Stem Cell Podcast

Shawn L). Hingtgen
---------	-------------

February 6, 2017	theverge.com: The next weapon against brain cancer may be human skin
February 2, 2017	genengnews.com: Brain cancer treatment puts skin in the game
February 2, 2017	Newatlas.com: Stem cells beat the clock for brain cancer
February 1, 2017	Sciencemag.org: Reprogrammed skin cells shrink brain tumors in mice
December 19, 2016	Lineberger Comprehensive Cancer Center: Funding brochure, featured story
May 31, 2016	WNCN News: At UNC, stem cell treatment for brain tumors shows promise.
March 30, 2016	Radio In Vivo: Stem Cell Therapy for Cancer.
March 10, 2016	WRAL News: Stem cells may increase survival for brain cancer patients.
February 24, 2016	UNC News: UNC researchers make groundbreaking discovery, use skin cells to kill cancer
February 24, 2016	Carolina Alumni Review: Skin cells-to-stem cells can destroy brain tumors.
February 24, 2016	Oncologia.com: Groundbreaking discovery made uses skin cells to kill cancer
February 2, 2016	The News & Observer: 'A big step': UNC researchers use stem cells to treat brain cancer
September 27, 2015	Daily Tarheel: \$100 million gift prompts innovation in Pharmacy School

ENTREPRENEURIAL ACTIVITIES

Filed Patents

- 1. Hingtgen, S.D., Dumitru, R., Bago, J.R., "Methods for Making Neural Stem Cells and Uses Thereof", March 8, 2015. PCT/US2016/020649.
- 2. Hingtgen, S.D., Pegna, G.J., Bago, J.R., "Delivery Vehicles for Neural Stem Cells and Uses Thereof", March 16, 2015. PCT/US2016/024896.
- 3. Hingtgen, S.D., Nichols, S. "Transdifferentiated Cell Compositions and Methods for Use in Therapeutic Methods", January 15, 2019. PCT/US2019/62/792,837.
- 4. Hingtgen, S.D., Nichols, S. "*Tumor Homing Cell Compositions For Use In Therapeutic Methods*". November 20, 2019. PCT/US2019/059532.
- Satterlee, A., Hingtgen, S.D., Baldwin, A.S., Mann, B.E., Zhang, X., Bell, N., Valdivia-Acosta, A. ""A Normalized Ex Vivo Platform for Functional Precision Diagnosis of Patient Tumor Tissue". September 8, 2022. US63/404866.

Start-up Company

Falcon Therapeutics-Launched September 2015

• Shawn Hingtgen, Ph.D.: Founding Scientist, SAB and BOD member

The goal of Falcon Therapeutics is to advance cell therapy discoveries generated in the Hingtgen Lab towards the clinic to redefine the care for patients with cancers that are currently incurable. Our lead product is a personalized stem cell therapy/biomaterial combination device designed initially for treatment of cancer. We are expanding this platform technology for a variety of cancer types and working to launch first-in-human trials.

Round Table Research-Launched January, 2023

Shawn Hingtgen, Ph.D.: Founding Scientist

The goal of Round Table Research is to advance a variety of discoveries generated across a team of academic scientists at UNC towards the clinic to improve outcomes for cancer patients.

Related Activities

2015 Selected for participation in the Chancellor's Faculty Entrepreneurial Boot Camp

2014 Selected for membership in the *4D Program* whose goal is to advance medical innovations towards commercial endpoints.

IRB PROTOCOLS

IRB #:	13-0839
PI:	Hingtgen
Approval date:	05/30/2013-07/13/2016
Enrollment:	30 patients
Status:	Completed
Title:	LCCC 1308: Engineering Reprogramed Patient-derived Neural Stem Cells for Novel Malignant Glioma
	Therapy

Shawn D. Hingtgen

Page 13 of 30

Prepared: 2022

Goal: To allow the collection of skin punch biopsy samples from patients diagnosed with glioblastoma. At the time of surgery for tumor debulking, a small skin punch is excised from the surgical field. The tissue is collected by the UNC Tissue Procurement facility and transferred to the Hingtgen lab where the skin sample is converted into fibroblast cell cultures, and converted into novel transdifferentiated neural stem cells.

IRB #:	16-1749
PI:	Khagi
Approval date:	07/14/2016-2020
Enrollment:	10 patients
Status:	Completed
T:41	Γ · · · 1

Title: Engineering induced Neural Stem Cells from Skin Tissue of Non-Cancer Patients Goal: Defining the size of the initial skin punch required to generate a clinical dose of iNSCs in a clinically-compatible time frame is a vital step towards defining the protocol for the generation of clinical iNSC therapies. The goal of this IRB is to allow the collection of skin punch biopsy samples of various sizes to address this question. Skin samples are collected from operating rooms at UNC Hospitals or affiliated surgery centers. This tissue would otherwise be discarded as waste after a medical procedure. The tissue is transferred to the Hingtgen lab. It is measured and weighed, then processed into iNSCs. The time required to generate 1×10^9 iNSCs (the desired clinical dose) is recorded and compared across skin samples of different sizes to define the required starting biopsy size.

IRB #:	20-2342
PI:	Bae-Jump (Hingtgen, Co-I)
Approval date:	09/10/2020-current
Enrollment:	30 patients
Status:	Active (enrolling)
Title:	MASCOT: Manufacturing a

Title: MASCOT: Manufacturing and Analysis of Stem Cells from Skin Cells for Ovarian Cancer Treatment Goal: This pre-clinical study examines the feasibility of manufacturing stem cells from skin of 30 ovarian cancer patients, and the ability of these stem cells to migrate toward an autologous tumor, *in vitro*. Skin and tumor samples will be collected from enrolled subjects at the time of standard of care debulking surgery for ovarian cancer. Two skin samples, approximately 6mm in length, will be collected from along the abdominal incision during surgery to de-bulk the ovarian tumor. These skin samples, and tumor from the same subject will be transferred to the Hingtgen lab in the University of North Carolina (UNC) Eshelman School of Pharmacy to determine the feasibility of generating patient-specific tumor-homing stem cells, as well as the anti-tumor properties and efficacy of each patient-derived line.

IRB #:	20-1878
PI:	Hingtgen
Approval date:	08/31/2020-current
Enrollment:	60 patients
Status:	Active (enrolling)
Title:	SLICE-BMC: Surrogate Live Organ Model In Clinical Evaluation of Brain Metastases and Cancers
Goal: This pilot study aims to collect fresh primary brain tumor and fresh brain metastasis samples from adult and pediatric patients for analysis on a micro-engineered tissue platform, which uses living organ slices derived from mouse organs, called "surrogates".	

IRB #:	23-0834
PI:	Satterlee (Hingtgen, Co-I)
Approval date:	07/31/2023-current
Enrollment:	50 patients
Status:	Approved
Title:	A feasibility study to determine if a novel patient-derived explant platform can produce drug sensitivity
	scores within a clinically relevant time frame in patients with CNS tumors

Goal: This clinical trial will determine the feasibility of using a novel patient-derived explant (PDE) platform to generate drug sensitivity scores from patients with central nervous system tumors within a clinically meaningful timeframe.

TEACHING ACTIVITIES

LECTURES

2024 SP 2024 SP 2023 AU	Pharmaceutics & Drug Delivery Systems Nanomedicine	PHCY 514	4			
			4		Professional	
2023 AU	D' 1' 1 L '	DPMP 738	4		Graduate	
	Biomedical Imaging Science Seminar	BMME 796	1	11	Graduate	
2023 AU	Advances in Drug Delivery	DPMP 864	1	12	Graduate	
2023 SP	Pharmaceutics & Drug Delivery Systems	PHCY 514	4	120/25	Professional	
2023 SP	Seminar	PHRS 899.004	5	22	Graduate	
2023 SP	Nanomedicine	DPMP 738	1	8	Graduate	
2022 AU	Seminar	PHRS 899.004	5	22	Graduate	
2022 AU	Advances in Drug Delivery	DPMP 864	1	12	Graduate	
2022 SP	Pharmaceutics & Drug Delivery Systems	PHCY 514	4	120/25	Professional	
2022 SP	Nanomedicine	DPMP 738	1	9	Graduate	
2021 AU	Advances in Drug Delivery	DPMP 864	2	8	Graduate	
2021 SP	Pharmaceutics & Drug Delivery Systems	PHCY 514	4	120/25	Professional	5.00/5
2021 SP	Nanomedicine	MOPH 738	1	10	Graduate	5.00/5
2020 AU	The American Professoriate	IDST-890	1	25	Graduate	NA
2020 AU	Advances in Drug Delivery	DPMP 864	29	8	Graduate	5.00/5
2020 SP	Pharmaceutics & Drug Delivery Systems	PHCY 514	3	125/25	Professional	5.00/5
2020 SP	Nanomedicine	MOPH 738	1	10	Graduate	4.00/5
2019 AU	Advances in Drug Delivery	DPMP 864	29	10	Graduate	5.00/5
2019 SP	Pharmaceutics & Drug Delivery Systems	PHCY 514	3	125/25	Professional	5.00/5
2019 SP	Nanomedicine	MOPH 738	1	10	Graduate	5.00/5
2018 AU	Advances in Drug Delivery	DPMP 864	10	6	Graduate	4.00/5
2018 SP	Experimental Approaches to Human Disease	CBPH863	1	11	Graduate	NA
2018 SP	Pharmaceutics & Drug Delivery Systems	PHCY 512	1	125/25	Professional	4.25/5
2017 SP	Pharmaceutics II	PHCY 512	1	125/25	Professional	4.25/5
2017 SP	BioPsych: CNS Shawn D. Hingtgen	NBIO 703	1 Page 15 of 30	7	Graduate Prepared:	NA

Year	Course name	Course Number	Lectures Taught	Enrollment	Course type	Overall Evaluation
2016 AU	PiPs 2	PHCY 621	7	122/25	Professional	4.67/5
2016 AU	Nanomedicine	MOPH 868	4	6	Graduate	4.00/5
2016 AU	BRIC Certificate Program	BME890-16	1	10	Graduate	NA
2016 AU	Advanced Drug Delivery Systems	BME590	1	6	Graduate	NA
2016 SP	Pharmaceutics II	PHCY 512	3	125/25	Professional	4.34/5
2016 SP	BioPsych: CNS	NBIO 703	1	7	Graduate	NA
2015 AU	Advances in Drug Delivery	MOPH 864	2	15	Graduate	3.8/5
2015 AU	Advanced Drug Delivery Systems	BME590	1	10	Graduate	NA
2014 AU	Pharmaceutics I	PHCY 410	4	161	Professional	4.17/5
2014 AU	Nanomedicine	MOPH 864	5	18	Graduate	NA
2014 AU	Seminar	PHRS 899.004	14	30	Graduate	NA
2013 AU	Pharmaceutics I	PHCY 410	4	132	Professional	4.46/5
2013 AU	Nanomedicine	MOPH 864	2	18	Graduate	NA
2013 AU	Seminar	PHRS 899.004	14	30	Graduate	NA
2013 SP	Pharmaceutics of Pharmacodynamics	PHCY 412	2	174	Professional	4.27/5
2012AU	Nanomedicine	MOPH 738	2	18	Graduate	NA

ADVISING

Current Lab Members Year Position Name **Previous Degree** Started **Topic/Thesis** Awards **Visiting Professor** Former Director, Neuroscience, McKnight Brain PhD, **Dennis Steindler** 2020 neural stem cells, Neuroscience Institute, Univ. of brain cancer Florida **Research Associate** PhD, Molecular Synthetic Andrew Buckley Biology, U. of **Research Scientist** 2021 technology Rochester PharmD, MS, Surgery and cell Alain Valdivia **Research Scientist** 2018 Pharmacology, therapy development Havana University **Research Scholar** Developing Brain Slice Adebimpe Adefola BS. Troy 2021 organotypic slice Scientist models Advancing Ph.D. Jawaharlal **Tissue Slice** Rajaneekar Dasari 2021 development of Nehru Tech. U. Scientist slice models **Post-Doctoral Fellows** PhD, Molecular Organotypic Xiaopei Xiang Pharmaceutics, Post Doc 2020 brain slice UCLA models Graduate

Shawn D. Hingtgen

Page 16 of 30

			Year		
Name	Previous Degree	Position	Started	Topic/Thesis	Awards
Yu Zhang	BS, Pharm Sci, U.	Graduate Student,	2022	Polymer matrices	
i u Zhang	Michigan	MD-PhD Program	2022	for cell therapy	
	BS, Neuroscience,	Graduate Student,		Tumor-homing	
Morrent Thang	Indiana U	Pharmaceutical	2021	cell therapy	
		Sciences		cen merapy	
Lauren Kass	BS, NC St.	Graduate Student,	2021	Polymer matrices	
Lauren Kass	DS, NC SI.	MD-PhD Program	2021	for cell therapy	
Breanna Mann	BS, Georgia Tech	Graduate Student,		Pediatric cancer	
		Pharmaceutical	2021	therapies	
	-	Sciences			
Caroline		Graduate Student,		Novel cell-	
Stockwell	BS. U. Rochester	Pharmaceutical	2023	derived drug	
Stockwell		Sciences		therapies	
Undergraduate St	tudents				
Ike Keku				2022	
Rami Darawsheh				2022	
Clara Mellows			2022		
Alexi Callinicos			2022		
Noah Bell			2019		
Ingrid Findlay			2019		

	Previous			Thesis		Current Position
Name	Degree	Position	Years	Title/Topic	Awards	
Research Scientis	t					
Kevin Sheets	PhD, Biomedical Engineering, Virginia Tech	Research Associate (Post-doc in the Hingtgen Group from 2014-2016)	2014- 2019	Clinical scaffold development		Stride Bio
Juli Bago`	PhD, Centre d'Investigación Cardiovascular, Spain	Research Scholar (Post- doc in the Hingtgen Group from 2013-2016)	2017- 2018	Human iNSC therapy; Polymeric scaffolds for cell therapy		PI, Ostrava, Czech Republic
Post-Doctoral Fellows						
Andrew Satterlee	PhD, Molecular Pharmaceutics, UNC	Post Doc	2016- 2020	iNSC durability & slice models	TL1 Fellow	Eshelman Institute for Innovation
Vivien Lettry	PhD, Animal Surgery, Hokkaido, Japan	Post Doc	2016- 210	Patient- derived iNSC Therapies		Project Manager, NC St.
Aldofo Alfonso	PhD, National University of Córdoba, Córdoba, Argentina.	Post Doc	2012- 2014	Mouse iNSC therapy		Research Scientist, GlaxoSmithKline
Shawn D). Hingtgen	Р	age 17 of 3	30	Pro	epared: 2022

Wulin Jiang	Degree BS, Clemson U M.S., Biotechnology, Northwestern U. BS, Chemistry,	Position Graduate Student, Pharmaceutical Sciences Graduate Student, Pharmaceutical Sciences	Years 2018- 2022 2017- 2021	Title/Topic Hybrid immune- stem cell therapies Cell therapy	Awards	Alcami Corporation
Wulin Jiang	M.S., Biotechnology, Northwestern U.	Student, Pharmaceutical Sciences Graduate Student, Pharmaceutical	2022 2017-	immune- stem cell therapies Cell therapy	Vosture	
wuiin Jiang	Biotechnology, Northwestern U.	Student, Pharmaceutical		A •	Vantura	
	BS, Chemistry.		2021	for metastatic disease	Venture Catalyst Fellow	L.E.K. Consulting
Alison Mercer-	Pomona College	Graduate Student, MD- PhD Program	2017- 2021	Metastatic Cancer Therapy	Dissertation award, Graduation speaker	Medical School, UNC
Hunter Bomba	BS, NC St. U	Graduate Student, Pharmaceutical Sciences	2018- 2021	Polymer matrices for NSC therapy		Virtici, LLC
Shaye Hagler	BS, Biochemistry, Florida St.	Graduate Student, Pharmaceutical Sciences	2015- 2019	iNSC Therapies	GSO Representative	IsoPlexis
I Onyinyechukwu Okolie	BS, Biomedical Engineering, U. of Washington	Graduate Student, Pharmaceutical Sciences	2012- 2016	Mouse models of brain cancer resection		Washington St. Patrol
Clinical Fellows						
Elizabeth Finch	MD, Hematology- Oncology, UNC Hospitals	Fellow	2016	Impact of surgery on NSC transplant		Penn St. Hershey
Medical Students				unsplant		
Guillame Pegna	BS, UNC	Medical Student	2013- 2014	Polymeric Scaffolds		Resident; UNC Hospitals
Post-Bachelorette						
Ivory Paulk	BS, University of Central Florida	Post-bach	2016- 2017	Stem cell therapies for metastatic cancer	UNC PREP Program	Graduate School; UCLA
Undergraduates						
Abby Ewend	BS, Biology, UNC	Undergraduate Scholar	2017- 2021	Cancer models		Medical School, Washington U.
Spencer Maingi	BS, Chemistry, UNC	Undergraduate Researcher	201- 2021	iNSC therapy		Masters Program, NC St.
Morgan Goetz	BS, BME, UNC	Undergraduate Researcher	2017- 2019	Matrix development		Graduate School, Harvard U.
Becca Sikora I High School Studen	BS, Chemistry, UNC	Undergraduate Researcher	2012- 2014	iNSC therapy		DPM, Kent State University College of Podiatric Medicine

Shawn D. Hingtgen

Page 18 of 30

Prepared: 2022

Name	Previous Degree	Position	Y	ears	Thesis Title/Topic	Awards	Current Position
Luke Garges	TBD		2	2016			Trinity High School
Abby Ewend	Durham Academy	Undergradu Scholar	ate 2	2017			UNC
Michael Marand Other	Panther Creek High School	Summer inte	ern 2	2017		YIP Fellow	UNC
Other	Pharm Sci, U.						
Nicole Tan	College London		2	20(2)2	Live cell platform		
David Hesmer	BS, NC State	Researche	r	.018- 2020		Brain cance survivor	
Sari Freedman		Pharmacy Student	1	2013	iNSC therapy		Resident; U. of Colorado; School of Pharmacy and Pharmaceutical Sciences
Neil Cornwell		Summer Inte	ern	2013, 2014	Polymeric Scaffolds		BME Student; NC State
Dissertation Com	mittees and Rotat	tion Advisor					
Student's Name	Departi	nent	D	ate	Role	(Current Position
Zhongbo Li	Divisio Pharmacoengii Molecular Pha	neering and	2023-	Present	Dissertat Commit		UNC Chapel Hill
Madelyn	Joint Depar	tment of	2023-	Present	Dissertat	tion U	JNC Chapel Hill,
VanBlunk	Biomedical E	ngineering			Commit		NC State
Ryan Woodring	Divisio Pharmacoengii Molecular Pha	neering and	2023-	Present	Dissertat Commit		UNC Chapel Hill
Rania Tsahouridis	Department of P		2023-	Present	Dissertat Commit		UNC Chapel Hill
Sophie Mendell	Divisio Pharmacoengii Molecular Pha	neering and	2022	2-2023	Dissertat Commit		UNC Chapel Hill
Shreeya Bhonge	Applied Physic		2022-	Present	Dissertat		UNC Chapel Hill
Jessica Tetterton	Divisio Pharmacoengii Molecular Pha	neering and	2022-	Present	Dissertat Commit		UNC Chapel Hill
Ameya Chaudhari	Divisio Pharmacoengii Molecular Pha	neering and	2	022	Dissertat Commit		UNC Chapel Hill
Peter Voorhees	Divisio Pharmacoengin Molecular Pha	n of neering and	2021-	Present	Dissertat Commit		UNC Chapel Hill
Phillip Durham	Divisio Pharmacoengii Molecular Pha	n of neering and	202	1-2022	Dissertat Commit		UNC Chapel Hill
Kyle Riker	Department o Physical S	of Applied	2021-	Present	Dissertat Commit		UNC Chapel Hill

Marshall Fritz	Division of	2021-Present	Dissertation	UNC Chapel Hill
	Pharmacoengineering and	2021-1103em	Committee	one chaper min
	Molecular Pharmaceutics			
Emily Bonacquisti	Division of	2021-2022	Dissertation	UNC Chapel Hill
	Pharmacoengineering and		Committee	-
	Molecular Pharmaceutics			
Misha Fini	Microbiology and	2020	Masters Committee	UNC Chapel Hill
	Immunology			
Timothy Little	Division of	2020	Rotation Advisor	UNC Chapel Hill
	Pharmacoengineering and			
	Molecular Pharmaceutics			
Abigail Clevelanc	UNC Neuroscience Center,	2019-2023	Dissertation	UNC Chapel Hill
	Department of Neurology		Committee	
Jasmine King	Department of Biomedical	2019-2023	Dissertation	UNC Chapel Hill
	Engineering, Division of		Committee	
	Pharmacoengineering and			
M.:	Molecular Pharmaceutics	2010	Rotation Advisor	
Mairead Heavy	Molecular Pharmaceutics, UNC Eshelman School of	2019	Rotation Advisor	UNC Chapel Hill
	Pharmacy			
Emelia Zwyot	Chemical Biology, UNC	2017-2021	Dissertation	UNC Healthcare
Ellicita Zwyot	Eshelman School of	2017-2021	Committee	UNC Incatticate
	Pharmacy		Committee	
Kathryn Moore	Molecular Pharmaceutics,	2016-2020	Dissertation	Emory U.
Raunyn Wioore	UNC Eshelman School of	2010-2020	Committee	Linory C.
	Pharmacy		commute	
Randolph Qian	Molecular Pharmaceutics,	2016-2020	Dissertation	RegenXBio
Tunnorph Quan	UNC Eshelman School of	2010 2020	Committee	
	Pharmacy			
Dean Nehama	MD-PhD Program, UNC	2012-2019	Dissertation	UNC Chapel Hill
	Chapel Hill		Committee	1
Quan Jin	Molecular Pharmaceutics,	2015-2019	Dissertation	Biogen
	UNC Eshelman School of		Committee	C
	Pharmacy			
Duhyeong Hwang	Molecular Pharmaceutics,	2015-2020	Dissertation	UNC Chapel Hill
	UNC Eshelman School of		Committee	
	Pharmacy			
Mengying Hu	Molecular Pharmaceutics,	2016-2019	Dissertation	Weill Cornell
	UNC Eshelman School of		Committee	
	Pharmacy			
Jing Fu	Molecular Pharmaceutics,	2013-2017	Dissertation	Tergus Pharma,
	UNC Eshelman School of		Committee	RTP
	Pharmacy	2011.2015	D	
Tojan Rahhal	Molecular Pharmaceutics,	2014-2017	Dissertation	Alliance Professional
	UNC Eshelman School of		Committee	Development, LLC
DOW	Pharmacy	2014 2017	D::	D (1 (1 D 1)
Dongfen Yuan	Molecular Pharmaceutics,	2014-2017	Dissertation	Post-doctoral Fellow,
	UNC Eshelman School of		Committee	UNC
Casaia Carrelill	Pharmacy	2014	Dotation A device	Vorea
Cassie Caudill	UNC Biological and	2014	Rotation Advisor	Vaxess
	Biomedical Sciences PhD			
Christina Parker	Program	2014-2019	Dissertation	Е1: 1 :11. .
Unifishina Parker	UNC Biological and Biomedical Sciences PhD	2014-2019	Committee	Eli Lilly
	Program		Commutee	
	Hingtgen	Page 20 of 30		
(1) P				Prepared: 2022

Samantha Fix	Molecular Pharmaceutics,	2014	Rotation Advisor	MD Anderson
	UNC Eshelman School of Pharmacy			
Katherine Stember	UNC Biological and	2015	Rotation Advisor	
	Biomedical Sciences PhD			
	Program			
Tejash Patel	Molecular Pharmaceutics,	2015-2018	Dissertation	RegenxBio
	UNC Eshelman School of		Committee	
	Pharmacy			
Karen Bulaklak	Molecular Pharmaceutics,	2015-2017	Dissertation	Post-doctoral Fellow;
	UNC Eshelman School of Pharmacy		Committee	Duke University
Michael Collier	Molecular Pharmaceutics,	2015-2017	Dissertation	Avanti Polar Lipids,
	UNC Eshelman School of		Committee	Alabama
	Pharmacy			
Junghyun Kim	Molecular Pharmaceutics,	2016-2017	Dissertation	Post-doctoral Fellow,
	UNC Eshelman School of		Committee	IBS-POSTECH,
	Pharmacy			Seoul, South Korea
Nihan Chen	Molecular Pharmaceutics,	2016-2019	Dissertation	Pfizer
	UNC Eshelman School of Pharmacy		Committee	
Carla Costa-	Molecular Pharmaceutics,	2016-2018	Dissertation	UNC Chapel Hill
Sanchez	UNC Eshelman School of		Committee	
	Pharmacy			
Emelia Zwyott	UNC Biological and	2017	Rotation Advisor	
	Biomedical Sciences PhD			
	Program			
Randolph Qian	Molecular Pharmaceutics,	2017	Rotation Advisor	
	UNC Eshelman School of			
	Pharmacy			

GRANTS

ONGOING GRANT SUPPORT

Source of Support:	UNC Lineberger Comprehensive Cancer Center
Project Number:	N/A
Principal Investigator:	Hingtgen, Freeman
Total Period of Support:	08/01/2023-07/31/2025
Total Direct Funding:	\$200,000
Percent Effort:	10% effort
Project Title:	UberCell technology: programmable peptide-cell delivery vehicles drive cancer
-	therapy in a new direction.

Goal: This project will advance development of novel cell-peptide therapies for cancer.

Source of Support:	Ian's Friends Foundation			
Project Number:	N/A			
Principal Investigator:	Hingtgen, Floyd			
Total Period of Support:	08/01/2023-07/31/2024			
Total Direct Funding:	\$115,000			
Percent Effort:	10% effort			
Project Title:	Targeting tumor-microenvironment interactions in pediatric brain tumors			
Goal: This project will investigate the impact of tumor microenvironment on tumor progression and drug response				
using spatial transcriptomics and living tissue brain slice technology.				

Source of Support: UNC Lineberger Comprehensive Cancer Center Project Number: N/A Principal Investigator: Hingtgen, Baldwin, Satterlee Total Period of Support: 02/01/2023-01/31/2024 Total Direct Funding: \$200,000 Percent Effort: 10% effort Project Title: Advancing UNC Brain Cancer Translation Through a Living Tissue Platform Goal: These dedicated funds will further advance our work on living tissue brain slices within a translational framework and across these exemplar projects.

Source of Support:	NIH/NINDS PA-13-302: Research Project Grant (Parent R01)
Project Number:	R01 CA269974
Principal Investigator:	Hingtgen, Perry
Total Period of Support:	02/01/2022-01/31/2027
Total Direct Funding:	\$1,675,000
Percent Effort:	20% effort
Project Title:	Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing
	Stem Cell Therapy for Post-surgical Brain Cancer

Goal: This R01 is focused on utilizing additive manufacturing technology to generate new matrices that maximize the efficacy of stem cell therapy for post-surgical glioblastoma.

Source of Support:	Kids Beating Cancer Foundation	
Principal Investigator:	Hingtgen	
Total Direct Funding:	\$126,200	
Total Period of Support:	01/30/2023-01/29/2024	
Percent Effort:	2% effort	
Project Title:	Stem Cell-delivered Particles for Hyperthermia Therapy to Treat Glioblastoma	
Goal: Through a new partnership with the Tarantula and Baumgarten groups, we will develop NSC-nanoparticle		
therapies that will eradicate brain cancer when an oscillating field is applied.		

Source of Support:	NIH/NCATS PAR-19-099: Research Project- Cooperative Agreement: Clinical
	and Translational Science Award, Collaborative Innovation Award (U01)
Project Number:	U01TR003715
Principal Investigators:	Hingtgen, Baldwin
Total Period of Support:	07/01/2021-06/30/2025
Total Direct Funding:	\$4,598,428
Percent Effort:	20% effort
Project Title:	A consortium effort to translate therapies for neurological disease via an ex vivo
-	organotypic tissue platform

Goal: This large multi-PI U01 project brings together basic science and clinical experts across UNC, Duke, and U. of Florida is to add new capabilities, discover new mechanisms of disease, and drive translation of promising new therapeutic agents towards human patients in living tissue models of brain cancer, neurodegenerative disease, and ischemic disease.

Source of Support:	Eshelman Institute for Innovation	
Principal Investigator:	Hingtgen	
Total Direct Funding:	\$500,000	
Total Period of Support:	06/01/2019-06/30/2024	
Percent Effort:	10% effort	
Project Title:	Harnessing synthetic biology to develop next-generation cell therapies	
Goal: Through a new partnership with the J. Craig Venter Institute, blend the latest in synthetic biology with		
emerging cell therapy techniques to create a new class of anti-cancer cell therapies.		
Source of Support:	Accelerate Brain Cancer Cure	
Principal Investigator:	Hingtgen	

Principal Investigator:	Hingtgen		
Total Direct Funding:	\$169,000		
Shawn D. Hingtgen		Page 22 of 30	

Total Period of Support:	03/01/2019-3/30/2024	
Percent Effort:	10% effort	
Project Title:	Developing cellular hybrids to treat glioblastoma	
Goal: Create a new approach to cell-based immune therapy		

Source of Support:	NIH/NINDS PA-20-185: Research Project Grant (Parent R01)
Project Number:	R01CA257009
Principal Investigator:	K Ainslie
Total Direct Funding:	\$1,925,265
Total Period of Support:	07/01/2021-06/30/2026
Percent Effort:	5% effort
Project Title:	Tunable Temporal Drug Release for Optimized Synergistic Combination
-	Therapy of Glioblastoma

Goal: To create polymer scaffolds as local controlled release drug delivery platforms for tuned drug release within the surgical cavity of GBM Role: Co-I

COMPLETED GRANT SUPPORT

Source of Support:	UNC Creativity Hub (Pre-proposal funded)
Principal Investigator:	Dayton
Total Direct Funding:	\$500,000 (\$5,000 pre-proposal)
Total Period of Support:	07/01/2023-06/30/2024
Percent Effort:	5% effort
Project Title:	Planning for The Carolina Center for Ultrasound Brain Imaging and Therapeutics
Goal:	(C-CUBIT) Create an infrastructure to advance funding, development, and translation of
	therapies based on ultrasound imaging for treatment of brain disorders
Source of Support:	NIH/NINDS PA-13-302: Research Project Grant (Parent R01)
Project Number:	R01NS099368
Principal Investigator:	Hingtgen
Total Direct Funding:	\$1,903,983
Total Period of Support:	11/01/2017-08/30/2023
Percent Effort:	25% effort
Project Title:	Engineering stem cell therapies to understand and overcome glioblastoma
	adaption

Goal: To define mechanisms underlying escape of GBM from NSC therapy and devise strategies to achieve durable suppression of post-operative disease.

Source of Support:	NIH/NCI PA-18-668 Pre-Doctoral Dual-Degree Training Program (F30)
Principal Investigator:	Mercer-Smith
Total Direct Funding:	\$80,000
Total Period of Support:	07/11/2019-07/10/2023
Percent Effort:	5% effort
Project Title:	Therapeutic Engineered Stem Cells as a New Adjuvant Therapy for Non-small
·	Cell Lung Cancer Brain Metastases

Goal: This F30 training grant is designed to create a new-based approach to treating lung cancer brain metastases

Source of Support:	Extrude Pharmaceutics	
Project Number:	Contract	
Principal Investigator:	Hingtgen	
Total Direct Funding:	\$149,550	
Total Period of Support:	07/01/2021-04/30/2023	
Percent Effort:	2% effort	
Project Title:	Testing controlled released systems for brain cancer	
Shawn D. Hingtgen	Page 23 of 30	Prepared: 2022

Goal: To test novel polymer-based drug delivery systems in resection models of GBM

Source of Support:Eshelman Institute for InnovationPrincipal Investigator:Hingtgen, FreemanTotal Direct Funding:\$150,000Total Period of Support:06/01/2020-06/30/2023Percent Effort:10% effortProject Title:UberCell TherapyGoal: Create a new hybrid peptide-cell therapy for treating cancer

Source of Support: Cancer Targeted Therapy Project Number: Contract Principal Investigator: Hingtgen Total Direct Funding: \$30,382 Total Period of Support: 07/01/2022-01/30/2023 Percent Effort: 2% effort Project Title: CTT industry contract to develop the C4-2B animal model Goal: to establish a reproducible model of metastatic prostate cancer in mice using the C4-2BGFP- Fluc cell line and characterize tumor growth over time.

Source of Support:	Cancer Targeted Therapy
Project Number:	Contract
Principal Investigator:	Hingtgen
Total Direct Funding:	\$96,633
Total Period of Support:	04/01/2023-03/30/2024
Percent Effort:	2% effort
Project Title:	Development of a PSMA-Targeted Monomethyl Auristatin E Prodrug for
-	Prostate Cancer

Goal: Evaluate the pharmacokinetic and biodistribution of CTT2101 and, 2. Evaluate the efficacy of CTT2101 at ED50 of cabazitaxel parent drug.

Source of Support:	NIH/NINDS PA-13-302: Research Project Grant (Parent R01)	
Project Number:	R01NS097507	
Principal Investigator:	Hingtgen	
Total Period of Support:	06/01/2016-07/30/2022	
Total Direct Funding:	\$1,750,904	
Percent Effort:	21.9% effort	
Project Title:	Nanofiber matrices to improve neural stem cell-mediated cancer therapy	
Goal: This R01 is focused on developing and testing a panel of novel nanofiber matrices in order to define the		
design parameters required to maximize the efficacy of stem cell therapy for post-surgical glioblastoma.		

Source of Support:	Extrude Pharmaceutics	
Project Number:	Contract	
Principal Investigator:	Hingtgen	
Total Direct Funding:	\$149,550	
Total Period of Support:	07/01/2021-12/30/2022	
Percent Effort:	2% effort	
Project Title:	Testing controlled released systems for brain cancer	
Goal: To test novel polymer-based drug delivery systems in resection models of GBM		

Source of Support:	NIH/NCATS PA-15-270, Omnibus Solicitation of the NIH for Small Business Technology Transfer Grant Applications (Parent STTR [R42])
	reemology fransier Grant Applications (Fatent 51 fr [K42])
Project Number:	2 R42TR001789-02A1
Principal Investigator:	Nichols
Role:	Co-PI

Shawn D. Hingtgen

Total Direct Funding:\$1,499,150Total Period of Support:02/01/2019-01/31/2022Percent Effort:10% effortProject Title:Personalized stem cell therapy for cancerGoal: This small business grant is focused on exploring multiple aspects of developing a clinical version of theiNSC therapy for human patient testing.

Source of Support:	Eshelman Institute for Innovation
Principal Investigator:	Hingtgen
Total Direct Funding:	\$200,000
Total Period of Support:	06/01/2018-05/30/2021
Percent Effort:	10% effort
Project Title:	Native and Bioprinted 3D Tissue Array Platform for Predicting Cancer
-	Metastasis and Drug Response

Goal: To create a novel tissue-slice based screening platform to predict the drug response of metastatic cancer.

Source of Support:	UNC Eshelman Institute for Innovation	
Principal Investigator:	Hingtgen	
Role:	PI	
Total Direct Funding:	\$200,000	
Total Period of Support:	06/01/2016-12/31/2020	
Percent Effort:	5% effort	
Project Title:	Systemic Stem Cell Therapy for Multi-organ Metastatic Breast Cancer	
Goal: To create the first systemically delivered tumor-homing stem cell therapy to target metastatic breast cancer		
distributed throughout multiple organs of the body.		

Source of Support:	Eshelman Institute for Innovation	
Principal Investigator:	Hingtgen	
Total Direct Funding:	\$200,000	
Total Period of Support:	06/01/2017-05/30/2021	
Percent Effort:	10% effort	
Project Title:	Personalized therapy for the incurable: metastatic lung cancer	
Goal: To create a novel cell-based therapy for metastatic lung cancer.		

Source of Support:	Ian's Friends Foundation
Principal Investigator:	Hingtgen, Floyd
Total Direct Funding:	\$192,000
Total Period of Support:	12/01/2019-08/30/2021
Percent Effort:	10% effort
Project Title:	Creating a novel tissue-based platform to rapidly elucidate therapeutic
-	vulnerabilities of pediatric brain cancer

Goal: Create a new approach to profile and treat pediatric brain cancers using a tissue-based platform

Source of Support:	UNC Eshelman Institute for Innovation
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$750,000
Total Period of Support:	11/01/2015-12/01/2020
Percent Effort:	15% effort
Project Title:	Transdifferentiation: A novel approach to personalized cancer therapy
Goal: To advance iNSC therap	y for GBM towards human patient testing by developing multiple strategies for
iNSC generation, therapy, and	characterization that will enable use in the clinical setting.

Source of Support: Principal Investigator:	North Carolina State University Pourdeyhimi	
Shawn D. Hingtgen	Page 25 of 30	Prepared: 2022

Role:	Co-PI
Total Direct Funding:	\$750,000 (\$110,000 to our sub-project
Total Period of Support:	02/01/2017-12/31/2019
Percent Effort:	10% effort
Project Title:	Game-changing Research Incentive Program: 3D Printing of Fibrous Tissue
-	Engineered Medical Products

Goal: To engineer a novel 3D printing nonwoven scaffold fabrication system and demonstrate the versatility and utility in different exemplars of regenerative medicine and cancer therapy.

Source of Support:	UNC Eshelman Institute for Innovation
Principal Investigator:	Lawrence
Total Direct Funding:	\$750,000 (\$300,000 to our project)
Total Period of Support:	11/01/2015-06/01/2019
Percent Effort:	10% effort
Project Title:	Light-Triggered Cell-Mediated Targeting of Glioblastoma
11	h to cancer therapy where small molecule drugs are released from stem cell drug
carriers using light activation.	

Source of Support:	NIH/NCATS PA-15-270, Omnibus Solicitation of the NIH for Small Business
	Technology Transfer Grant Applications (Parent STTR [R41])
Principal Investigator:	Nichols
Total Direct Funding:	\$250,000 (\$106,417 to our lab)
Total Period of Support:	06/15/2017-06/14/2019
Percent Effort:	10% effort
Project Title:	Personalized Neural Stem Cell Therapy for Cancer
Goal: This small business grant	is focused on exploring multiple aspects of developing a clinical version of the
iNSC therapy for human patient	testing.

Source of Support:	University of Birmingham, United Kingdom
Principal Investigator:	McConville
Total Direct Funding:	\$15,000 (\$12,000 to our sub-project)
Total Period of Support:	06/01/2017-05/30/2018
Percent Effort:	3% effort
Project Title:	Development of irinotecan-loaded PLGA millirods for the treatment of
-	glioblastoma

Goal: Our portion of the project will focus on testing drug-eluting nanorods in mouse models of GBM resection/recurrence.

Source of Support:	North Carolina General Assembly
Principal Investigator:	Jay, Ligler
Role:	Co-PI
Total Direct Funding:	\$1,830,00 (\$225,000 to our sub-project)
Total Period of Support:	06/01/2015-06/01/2018
Percent Effort:	10% effort
Project Title:	Program in PharmacoEngineering: Integrating Engineering with Pharmaceutical
-	Sciences to Improve the Delivery of Therapeutic and Diagnostic Agents.
0 1 1 1 1 1	

Goal: To develop heterogeneous scaffolding materials designed to optimize the retention, persistence, and migration of tumoricidal neural stem cells transplanted into the GBM resection cavity.

Source of Support:	UNC Eshelman Institute for Innovation
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$50,000
Total Period of Support:	11/01/2015-06/01/2017
Percent Effort:	5% effort

Shawn D. Hingtgen

Project Title: Developing cytotoxic stem cell therapy for pediatric brain cancer The goal of this project is to create new tumoricidal stem cell treatments that effectively treat various forms of pediatric brain cancer and can be easily translated into the clinical setting.

Source of Support:	North Carolina General Assembly-Supplement
Principal Investigator:	Jay, Ligler
Role:	Co-PI
Total Direct Funding:	\$35,000
Total Period of Support:	06/01/2015-06/01/2016
Percent Effort:	10% effort
Project Title:	Enhancing neural stem cell tumor-homing migration using novel single-cell
-	genetics

The goal of this project is to perform single-cell genetic analysis to identify pathways mediating migration in neural stem cells and convert this information into more effective treatments.

Source of Support:	NIH/NCATS KL2TR000084	
Principal Investigator:	Runge	
Role:	Scholar	
Total Direct Funding:	\$75,000 (an additional \$258,000 provided 75% salary coverage for 3 years)	
Total Period of Support:	11/1/2013-4/30-2018	
Percent Effort:	75% effort and 75% salary support	
Project Title:	UNC Clinical Translational Science Award-K12 Scholars Program (KL2)	
The overall goal of this application is to combine the research strengths, resources and opportunities at UNC and		
new partner, RTI International,	, to build on the foundation established in the CTSA's last five years. On this	

project, I was a Scholar.

Source of Support:	UNC Lineberger Comprehensive Cancer Center
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$100,000
Total Period of Support:	01/01/2013-01/31/2015
Percent Effort:	20% effort
Project Title:	Transdifferentiated Neural Stem Cells: A Novel Approach for Cancer Therapy
The goal of this small research	grant is to support develop induced neural stem cell carriers for cancer therapy.

Source of Support:	UNC IBM Junior Faculty Development Award
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$7,500
Total Period of Support:	01/01/2014-12/31/2014
Percent Effort:	10% effort
Project Title:	Developing Personalized Cell-based Therapies for Cancer Using Patient Biopsies
The goal of this small research	grant is to support develop induced neural stem cell carriers from the skin of brain
cancer patients.	

Source of Support:	UNC University Research Council Award
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$5,000
Total Period of Support:	01/01/2013-11/30/2015
Percent Effort:	10% effort
Project Title:	Generation of Novel Patient-specific Induced Neural Stem Cell Carriers for
2	Cancer Therapy.

The goal of this small research grant is to cover the expense of deriving and culturing induced neural stem cell carriers generated from the skin of brain cancer patients.

Shawn D. Hingtgen	Page 27 of 30	Prepared: 2022

Source of Support:	UNC Translational and Clinical Sciences Institute
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$50,000
Total Period of Support:	11/01/2014-10/31/2015
Percent Effort:	10% effort
Project Title:	Neural Stem Cell Mediated Brain Tumor Therapy: Increased Efficacy with
-	Electrospun Scaffolds

The goal of this project is to develop a new scaffold-based system for transplanting tumoricidal stem cells for cancer therapy.

Source of Support:	NIH/NCATS 2KR461203
Principal Investigator:	Hingtgen
Role:	PI
Total Direct Funding:	\$2,000
Total Period of Support:	06/01/2013-05/01/2013
Percent Effort:	2% effort
Project Title:	Developing translatable personalized cell therapies for glioblastoma
The goal of this small research	grant is to support the conversion of patient-derived skin biopsy samples into

The goal of this small research grant is to support the conversion of patient-derived skin biopsy samples into fibroblasts. These cells will then be used to explore the first induced neural stem cells created from the skin of cancer patients.

Source of Support:	NIH T32 CA079443
Principal Investigator:	Weissleder
Role:	Post-doctoral Fellow
Total Direct Funding:	\$115,000
Total Period of Support:	02/2005-06/2008
Percent Effort:	100% effort and salary
Project Title:	Training Grant in Molecular Imaging Research
Source of Support:	American Brain Tumor Association
**	
Principal Investigator:	Hingtgen
Role:	Post-doctoral Fellow
Total Direct Funding:	\$100,000
Total Period of Support:	07/2008-07/2010
Percent Effort:	75% effort and salary

Developing stem cells delivery of the targeted immunotoxin IL13-PE for treatment of Glioblastoma.

PROFESSIONAL SERVICE

SERVICE TO THE DISCIPLINE (NATIONAL/INTERNATIONAL)

Professional Organizations

Project Title:

2012-present	Society for Neuro-oncology
2012-present	American Society of Gene and Cell Therapy

Editorial Board Member

Biomaterials, International Editorial Board Member

Ad hoc Scientific Manuscript Reviewer for:

- 1) Science Translational Medicine
- 2) ACS Nano

2017

3) Stem Cells Translational Medicine

Shawn D. Hingtgen

Page 28 of 30

Prepared: 2022

- 4) Biomaterials
- 5) Cancer Letters
- *6)* Journal of Neuro-oncology*7)* Neuro-oncology
- 8) Methods
- 9) Chemical Engineering Journal10) Science Advances
- 11) Nature Biomedical Engineering

Reviewer Activities:

2023	Florida Center for Brain Tumor Research
2023	Lineberger Comprehensive Cancer Center, UCFR Award Committee
2023	Eshelman Institute for Innovation
2022	Florida Center for Brain Tumor Research
2021	Florida Center for Brain Tumor Research
2021	Lineberger Comprehensive Cancer Center, UCFR Award Committee
2019	NIH Nano Study Section Ad Hoc
2017	NIH Nano Study Section Ad Hoc
2016	Society of Neuro-oncology, Young Investigator Award
2015	Society of Neuro-oncology, Young Investigator Award
2015	Lineberger Comprehensive Cancer Center, UCFR Award Committee
2014	Lineberger Comprehensive Cancer Center, UCFR Award Committee

SERVICE TO COMPANIES:

2015- present	Co-founder, BOD, SAB, Falcon Therapeutics
2023- present	Co-founder, Round Table Research, Inc.
2023- present	Consultant, QHP Capital

UNIVERSITY SERVICE:

Departmental/Division:

2024-present	Divisional Director of Graduate Students
2024-present	Bill and Karen Campbell Faculty Mentoring Program: Mentor for Dr. Derek Bartlett
2023	Associate Professor Search Committee, Chair
2023	Eshelman Institute for Innovation Opportunistic Proposals, Reviewer
2022-2023	DPMP Director of BBSP Recruitment
2021	Eshelman Institute for Innovation Opportunistic Proposals, Reviewer
2021	IPhO panel discussion
2021	DPMP Recruitment Webinar
2020-present	ESOP Budget Committee
2020-present	Industry Pharmacists Organization (IPhO) faculty representative
2020	DPMP Recruitment Webinar
2020	ESOP Capital Working Group
2020	Focus group for FDA's biosimilar curriculum landscape assessment
2018	DPMP Faculty Search Committee
2018	Executive Vice Dean Search Committee
2017	Eshelman Institute for Innovation Symposium planning committee
2017	Graduate Curriculum Planning Committee
2016	EII Associate Director Search Committee Member
2016	Curricular Transformation Committee: Research/Scholarship Planning Team
2016	Curricular Transformation Committee: Student Practicum Planning Committee
2016	Graduate School self-study committee
2013-2020	DPMP Representative, Facilities Advisory Committee
2012	Research Assistant Professor Search Committee, Chair Division of Molecular Pharmaceutics

Institutional/UNC Campus:

2021	1 Member, Senior Director of Development Search Committee		e
Shawn D. Hingtgen		Page 29 of 30	Prepared: 2022

2020-2021 2019-present 2017 2016-present 2016-present 2015 2014 2014 2014 2012-2014	 Member, Lineberger Cancer Center Team Science Working Group Member, UNC Biosafety Committee Campaign Faculty Ambassador, UNC Campaign for Carolina Member, UNC Animal Studies Core Advisory Panel Member, UNC Small Animal Imaging Core Advisory Panel Candidate interviewer for MD-PhD and BBSP program NanoDDS Conference, session chair Candidate interviewer for MD-PhD and BBSP program Biomedical Research Imaging Center Retreat planning committee, member
Public:	
2019, 2020	Created a unique research opportunity for David Hesmer, an active brain cancer patient, within our research team. This partnership was featured in a press release from the Lineberger Comprehensive Cancer Center " <i>Grateful patient works with lab team to find cancer therapies</i> ".
2019	Organized a story on two cancer survivors working in our research team. Together with the UNC Development Office, "Minds meet hearts in the hunt for a cure" featured the stories of Dr. Andrew Satterlee and Alison Mercer-Smith who both survived cancer and are now working with us to create better treatment options.
2017-present	Participated in the <i>Head for the Cure</i> event to raise funding and awareness for brain cancer. Our research group participated in the race and attended the post-race event where we talked with fellow researchers, clinicians, and cancer survivors
2017	Organized <u>Trinity Winter Term: Day in the life of a scientist</u> . This program enabled high school students to gain exposure to careers in science. Over the course of two weeks, 12 students from Trinity High School met with 15 faculty members from the schools of Pharmacy and Medicine in 1 hour blocks. This provided the students with exposure and insights into careers as researchers, administrators, and leaders in the sciences.
2016, 2017	Participated in the Young Innovators Program (YIP) to provide bright and eager high school students with early immersive experiences in laboratory research.
2016	Participated in the Postbaccalaureate Research Education Program (PREP), where we train students with a Bachelor's degree to strengthen skills with the goal of enabling entry into PhD programs across the nation.
2016	Led a tour of research labs and the imaging center for the UNC Pediatric Cancer Survivor's Teen Support Group and their families.
2016	Volunteered at the SECU Family House. Our research group bought food, supplies, and cooked dinner for the guests whose families or loved ones are being treated at UNCHospitals.
UNIVERSITY AFFI	LIATIONS:
02/2014-present	Member, 4D Initiative, UNC Translational and Clinical Sciences Institute, UNC

02/2014-present	Member, 4D Initiative, UNC Translational and Clinical Sciences Institute, U
11/2013-present	Member, Neuroscience Center; UNC
12/2012-present	Member, Center for Nanotechnology and Drug Delivery; UNC
10/2012-present	Associate Member, Lineberger Comprehensive Cancer Center; UNC
04/2012-present	Member, Biomedical Research Imaging Center, UNC
_	